Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
11
result(s) for
"Bellegarde, Fanny"
Sort by:
AGO104 is a RdDM effector of paramutation at the maize b1 locus
by
Oltehua-Lopez, Omar
,
Arteaga-Vazquez, Mario A.
,
Leblanc, Olivier
in
Analysis
,
Anthocyanins
,
Biology and life sciences
2022
Although paramutation has been well-studied at a few hallmark loci involved in anthocyanin biosynthesis in maize, the cellular and molecular mechanisms underlying the phenomenon remain largely unknown. Previously described actors of paramutation encode components of the RNA-directed DNA-methylation (RdDM) pathway that participate in the biogenesis of 24-nucleotide small interfering RNAs (24-nt siRNAs) and long non-coding RNAs. In this study, we uncover an ARGONAUTE (AGO) protein as an effector of the RdDM pathway that is in charge of guiding 24-nt siRNAs to their DNA target to create de novo DNA methylation. We combined immunoprecipitation, small RNA sequencing and reverse genetics to, first, validate AGO104 as a member of the RdDM effector complex and, then, investigate its role in paramutation. We found that AGO104 binds 24-nt siRNAs involved in RdDM, including those required for paramutation at the b1 locus. We also show that the ago104-5 mutation causes a partial reversion of the paramutation phenotype at the b1 locus, revealed by intermediate pigmentation levels in stem tissues. Therefore, our results place AGO104 as a new member of the RdDM effector complex that plays a role in paramutation at the b1 locus in maize.
Journal Article
Signals and players in the transcriptional regulation of root responses by local and systemic N signaling in Arabidopsis thaliana
by
Biochimie et Physiologie Moléculaire des Plantes (BPMP) ; Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
,
Bellegarde, Fanny
,
Martin, Antoine
in
Arabidopsis - genetics
,
Arabidopsis - physiology
,
Arabidopsis Proteins - genetics
2017
In natural environments, nitrogen (N) concentration in the soil fluctuates greatly and is often limiting for plant growth and development. The ability of plants to respond to changes in N availability is therefore essential for adaptation. The response of plants to N variations consists in particular of adjusting root N uptake systems and root architecture. To do so, plants integrate local sensing and signaling of external N availability with systemic sensing and signaling of their internal N status, in order to tune the functional and structural properties of the root system in accordance with the N demand for growth of the whole plant. Transcriptional regulation of gene expression is one of the most important processes plants use to adapt the properties of the root system in response to local and long-distance N pathways. This review focuses on the mechanisms that give rise to transcriptional responses in Arabidopsis roots under N fluctuations, with an emphasis on those associated with the regulation of nitrate uptake and transport systems. We discuss the putative long-distance signals triggering the gene expression responses, as well as the molecular players that locally induce transcriptional changes. We also highlight several observations revealing the importance of adopting an integrative approach in the regulation of N signaling.
Journal Article
Plant Viruses Can Alter Aphid-Triggered Calcium Elevations in Infected Leaves
by
Then, Christiane
,
Bellegarde, Fanny
,
Macia, Jean-Luc
in
Animals
,
aphid feeding activity
,
Aphids - physiology
2021
Alighting aphids probe a new host plant by intracellular test punctures for suitability. These induce immediate calcium signals that emanate from the punctured sites and might be the first step in plant recognition of aphid feeding and the subsequent elicitation of plant defence responses. Calcium is also involved in the transmission of non-persistent plant viruses that are acquired by aphids during test punctures. Therefore, we wanted to determine whether viral infection alters calcium signalling. For this, calcium signals triggered by aphids were imaged on transgenic Arabidopsis plants expressing the cytosolic FRET-based calcium reporter YC3.6-NES and infected with the non-persistent viruses cauliflower mosaic (CaMV) and turnip mosaic (TuMV), or the persistent virus, turnip yellows (TuYV). Aphids were placed on infected leaves and calcium elevations were recorded by time-lapse fluorescence microscopy. Calcium signal velocities were significantly slower in plants infected with CaMV or TuMV and signal areas were smaller in CaMV-infected plants. Transmission tests using CaMV-infected Arabidopsis mutants impaired in pathogen perception or in the generation of calcium signals revealed no differences in transmission efficiency. A transcriptomic meta-analysis indicated significant changes in expression of receptor-like kinases in the BAK1 pathway as well as of calcium channels in CaMV- and TuMV-infected plants. Taken together, infection with CaMV and TuMV, but not with TuYV, impacts aphid-induced calcium signalling. This suggests that viruses can modify plant responses to aphids from the very first vector/host contact.
Journal Article
The Chromatin Factor HNI9 and ELONGATED HYPOCOTYL5 Maintain ROS Homeostasis under High Nitrogen Provision
by
Biochimie et Physiologie Moléculaire des Plantes (BPMP) ; Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
,
Krouk, Gabriel
,
Bach, Lien, L
in
Arabidopsis - physiology
,
Arabidopsis Proteins - genetics
,
Arabidopsis Proteins - metabolism
2019
Reactive oxygen species (ROS) can accumulate in cells at excessive levels, leading to unbalanced redox states and to potential oxidative stress, which can have damaging effects on the molecular components of plant cells. Several environmental conditions have been described as causing an elevation of ROS production in plants. Consequently, activation of detoxification responses is necessary to maintain ROS homeostasis at physiological levels. Misregulation of detoxification systems during oxidative stress can ultimately cause growth retardation and developmental defects. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) plants grown in a high nitrogen environment express a set of genes involved in detoxification of ROS that maintain ROS at physiological levels. We show that the chromatin factor HIGH NITROGEN INENSITIVE 9 (HNI9) is an important mediator of this response and is required for the expression of detoxification genes. Mutation in HNI9 leads to elevated ROS levels and ROS-dependent phenotypic defects under high but not low N provision. In addition, we identify ELONGATED HYPOCOTYL 5 (HY5) as a major transcription factor required for activation of the detoxification program under high N. Our results demonstrate the requirement of a balance between N metabolism and ROS production, and establish major regulators required to control ROS homeostasis under conditions of excess N.
Journal Article
AGO104 is an RdDM effector of paramutation at the maize b1 locus
by
Oltehua-Lopez, Omar
,
Arteaga-Vazquez, Mario A
,
Leblanc, Olivier
in
DNA methylation
,
Epigenetics
,
Genetics
2021
Paramutation is an exception among eukaryotes, in which epigenetic information is conserved through mitosis and meiosis. It has been studied for over 70 years in maize, but the mechanisms involved are largely unknown. Previously described actors of paramutation encode components of the RNA-dependent DNA-methylation (RdDM) pathway all involved in the biogenesis of 24-nt small RNAs. However, no actor of paramutation have been identified in the effector complex of RdDM. Here, through a combination of reverse genetics, immunolocalization and immunoprecipitation (siRNA-IP) we found that ARGONAUTE104 (AGO104), AGO105 and AGO119 are members of the RdDM effector complex in maize and bind siRNAs produced from the tandem repeats required for paramutation at the b1 locus. We also showed that AGO104 is an effector of the b1 paramutation in maize. Competing Interest Statement The authors have declared no competing interest.
NRT2.1 phosphorylation prevents root high affinity nitrate uptake activity in Arabidopsis thaliana
by
Laugier, Edith
,
Santoni, Veronique
,
Schulze, Waltraud
in
Affinity
,
Arabidopsis thaliana
,
C-Terminus
2019
In Arabidopsis thaliana, NRT2.1 codes for a main component of the root nitrate high-affinity transport system. Previous studies revealed that post-translational regulation of NRT2.1 plays an important role in the control of root nitrate uptake and that one mechanism could correspond to NRT2.1 C-terminus processing. To further investigate this hypothesis, we produced transgenic plants with truncated forms of NRT2.1. It revealed an essential sequence for NRT2.1 activity, located between the residues 494-513. Using a phospho-proteomic approach, we found that this sequence contains one phosphorylation site, at serine 501, which can inactivate NRT2.1 function when mimicking the constitutive phosphorylation of this residue in transgenic plants. This phenotype could neither be explained by changes in abundance of NRT2.1 and NAR2.1, a partner protein of NRT2.1, nor by a lack of interaction between these two proteins. Finally, the relative level of serine 501 phosphorylation was found to be modulated by nitrate in wildtype plants. Altogether, these observations allowed us to propose a model for a new and essential mechanism for the regulation of NRT2.1 activity.