Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
61 result(s) for "Bellgard, Matthew"
Sort by:
Deep Sequencing of Plant and Animal DNA Contained within Traditional Chinese Medicines Reveals Legality Issues and Health Safety Concerns
Traditional Chinese medicine (TCM) has been practiced for thousands of years, but only within the last few decades has its use become more widespread outside of Asia. Concerns continue to be raised about the efficacy, legality, and safety of many popular complementary alternative medicines, including TCMs. Ingredients of some TCMs are known to include derivatives of endangered, trade-restricted species of plants and animals, and therefore contravene the Convention on International Trade in Endangered Species (CITES) legislation. Chromatographic studies have detected the presence of heavy metals and plant toxins within some TCMs, and there are numerous cases of adverse reactions. It is in the interests of both biodiversity conservation and public safety that techniques are developed to screen medicinals like TCMs. Targeting both the p-loop region of the plastid trnL gene and the mitochondrial 16S ribosomal RNA gene, over 49,000 amplicon sequence reads were generated from 15 TCM samples presented in the form of powders, tablets, capsules, bile flakes, and herbal teas. Here we show that second-generation, high-throughput sequencing (HTS) of DNA represents an effective means to genetically audit organic ingredients within complex TCMs. Comparison of DNA sequence data to reference databases revealed the presence of 68 different plant families and included genera, such as Ephedra and Asarum, that are potentially toxic. Similarly, animal families were identified that include genera that are classified as vulnerable, endangered, or critically endangered, including Asiatic black bear (Ursus thibetanus) and Saiga antelope (Saiga tatarica). Bovidae, Cervidae, and Bufonidae DNA were also detected in many of the TCM samples and were rarely declared on the product packaging. This study demonstrates that deep sequencing via HTS is an efficient and cost-effective way to audit highly processed TCM products and will assist in monitoring their legality and safety especially when plant reference databases become better established.
Genome architecture and diverged selection shaping pattern of genomic differentiation in wild barley
Summary Divergent selection of populations in contrasting environments leads to functional genomic divergence. However, the genomic architecture underlying heterogeneous genomic differentiation remains poorly understood. Here, we de novo assembled two high‐quality wild barley (Hordeum spontaneum K. Koch) genomes and examined genomic differentiation and gene expression patterns under abiotic stress in two populations. These two populations had a shared ancestry and originated in close geographic proximity but experienced different selective pressures due to their contrasting micro‐environments. We identified structural variants that may have played significant roles in affecting genes potentially associated with well‐differentiated phenotypes such as flowering time and drought response between two wild barley genomes. Among them, a 29‐bp insertion into the promoter region formed a cis‐regulatory element in the HvWRKY45 gene, which may contribute to enhanced tolerance to drought. A single SNP mutation in the promoter region may influence HvCO5 expression and be putatively linked to local flowering time adaptation. We also revealed significant genomic differentiation between the two populations with ongoing gene flow. Our results indicate that SNPs and small SVs link to genetic differentiation at the gene level through local adaptation and are maintained through divergent selection. In contrast, large chromosome inversions may have shaped the heterogeneous pattern of genomic differentiation along the chromosomes by suppressing chromosome recombination and gene flow. Our research offers novel insights into the genomic basis underlying local adaptation and provides valuable resources for the genetic improvement of cultivated barley.
RD-RAP: beyond rare disease patient registries, devising a comprehensive data and analytic framework
Within the 21 APEC economies alone, there are an estimated 200 million individuals living with a rare disease. As such, health data on these individuals, and hence patient registries, are vital. However, registries can come in many different forms and operating models in different jurisdictions. They possess a varying degree of functionality and are used for a variety of purposes. For instance registries can facilitate service planning as well as underpin public health and clinical research by providing de-identified data to researchers. Furthermore, registries may be used to create and disseminate new knowledge to inform clinical best practice and care, to identify and enrol participants for clinical trials, and to enable seamless integration of patient data for diagnostic testing and cascade screening. Registries that add capability such as capturing patient reported outcomes enable patients, and their carers, to become active partners in their care, rapidly furthering research and ensuring up-to-date practice-based evidence. Typically, a patient registry centres around the notion of health data ‘capture’, usually for only one or a small subset of the functions outlined above, thereby creating fragmented datasets that, despite the best efforts and intentions, make it difficult to exchange the right data for the right purpose to the right stakeholder under appropriate governance arrangements. Trying to incorporate maximum functionality into a registry is an obvious strategy, but monolithic software solutions are not desirable. As an alternative, we propose that it is important to incorporate analytics as core to a patient registry, rather than just utilising registries as a ‘data capture’ solution. We contend that embracing an analytics-centric focus makes it reasonable to imagine a future where it will be possible to evaluate the individual outcomes of health interventions in real time. The purposeful and, importantly, the repurposable application of health data will allow stakeholders to extract, create and reuse knowledge to improve health outcomes, assist clinical decision making, and improve health service design and delivery. To realise this vision, we introduce and describe the concept of a Rare Disease Registry and Analytics Platform (RD-RAP); one that we hope will make a meaningful difference to the lives of those living with a rare disease.
DNA-Based Faecal Dietary Analysis: A Comparison of qPCR and High Throughput Sequencing Approaches
The genetic analysis of faecal material represents a relatively non-invasive way to study animal diet and has been widely adopted in ecological research. Due to the heterogeneous nature of faecal material the primary obstacle, common to all genetic approaches, is a means to dissect the constituent DNA sequences. Traditionally, bacterial cloning of PCR amplified products was employed; less common has been the use of species-specific quantitative PCR (qPCR) assays. Currently, with the advent of High-Throughput Sequencing (HTS) technologies and indexed primers it has become possible to conduct genetic audits of faecal material to a much greater depth than previously possible. To date, no studies have systematically compared the estimates obtained by HTS with that of qPCR. What are the relative strengths and weaknesses of each technique and how quantitative are deep-sequencing approaches that employ universal primers? Using the locally threatened Little Penguin (Eudyptula minor) as a model organism, it is shown here that both qPCR and HTS techniques are highly correlated and produce strikingly similar quantitative estimates of fish DNA in faecal material, with no statistical difference. By designing four species-specific fish qPCR assays and comparing the data to the same four fish in the HTS data it was possible to directly compare the strengths and weaknesses of both techniques. To obtain reproducible quantitative data one of the key, and often overlooked, steps common to both approaches is ensuring that efficient DNA isolation methods are employed and that extracts are free of inhibitors. Taken together, the methodology chosen for long-term faecal monitoring programs is largely dependent on the complexity of the prey species present and the level of accuracy that is desired. Importantly, these methods should not be thought of as mutually exclusive, as the use of both HTS and qPCR in tandem will generate datasets with the highest fidelity.
De novo assembly of Euphorbia fischeriana root transcriptome identifies prostratin pathway related genes
Background Euphorbia fischeriana is an important medicinal plant found in Northeast China. The plant roots contain many medicinal compounds including 12-deoxyphorbol-13-acetate, commonly known as prostratin that is a phorbol ester from the tigliane diterpene series. Prostratin is a protein kinase C activator and is effective in the treatment of Human Immunodeficiency Virus (HIV) by acting as a latent HIV activator. Latent HIV is currently the biggest limitation for viral eradication. The aim of this study was to sequence, assemble and annotate the E. fischeriana transcriptome to better understand the potential biochemical pathways leading to the synthesis of prostratin and other related diterpene compounds. Results In this study we conducted a high throughput RNA-seq approach to sequence the root transcriptome of E. fischeriana . We assembled 18,180 transcripts, of these the majority encoded protein-coding genes and only 17 transcripts corresponded to known RNA genes. Interestingly, we identified 5,956 protein-coding transcripts with high similarity (> = 75%) to Ricinus communis , a close relative to E. fischeriana . We also evaluated the conservation of E. fischeriana genes against EST datasets from the Euphorbeacea family, which included R. communis , Hevea brasiliensis and Euphorbia esula . We identified a core set of 1,145 gene clusters conserved in all four species and 1,487 E. fischeriana paralogous genes. Furthermore, we screened E. fischeriana transcripts against an in-house reference database for genes implicated in the biosynthesis of upstream precursors to prostratin. This identified 24 and 9 candidate transcripts involved in the terpenoid and diterpenoid biosyntehsis pathways, respectively. The majority of the candidate genes in these pathways presented relatively low expression levels except for 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS) and isopentenyl diphosphate/dimethylallyl diphosphate synthase (IDS), which are required for multiple downstream pathways including synthesis of casbene, a proposed precursor to prostratin. Conclusion The resources generated in this study provide new insights into the upstream pathways to the synthesis of prostratin and will likely facilitate functional studies aiming to produce larger quantities of this compound for HIV research and/or treatment of patients.
Immunomic Investigation of Holocyclotoxins to Produce the First Protective Anti-Venom Vaccine Against the Australian Paralysis Tick, Ixodes holocyclus
Venom producing animals are ubiquitously disseminated among vertebrates and invertebrates such as fish, snakes, scorpions, spiders, and ticks. Of the ~890 tick species worldwide, 27 have been confirmed to cause paralysis in mammalian hosts. The Australian paralysis tick ( Ixodes holocyclus ) is the most potent paralyzing tick species known. It is an indigenous three host tick species that secretes potent neurotoxins known as holocyclotoxins (HTs). Holocyclotoxins cause a severe and harmful toxicosis leading to a rapid flaccid paralysis which can result in death of susceptible hosts such as dogs. Antivenins are generally polyclonal antibody treatments developed in sheep, horses or camels to administer following bites from venomous creatures. Currently, the methods to prevent or treat tick paralysis relies upon chemical acaricide preventative treatments or prompt removal of all ticks attached to the host followed by the administration of a commercial tick-antiserum (TAS) respectively. However, these methods have several drawbacks such as poor efficacies, non-standardized dosages, adverse effects and are expensive to administer. Recently the I. holocyclus tick transcriptome from salivary glands and viscera reported a large family of 19 holocyclotoxins at 38-99% peptide sequence identities. A pilot trial demonstrated that correct folding of holocyclotoxins is needed to induce protection from paralysis. The immunogenicity of the holocyclotoxins were measured using commercial tick antiserum selecting HT2, HT4, HT8 and HT11 for inclusion into the novel cocktail vaccine. A further 4 HTs (HT1, HT12, HT14 and HT17) were added to the cocktail vaccine to ensure that the sequence variation among the HT protein family was encompassed in the formulation. A second trial comparing the cocktail of 8 HTs to a placebo group demonstrated complete protection from tick challenge. Here we report the first successful anti-venom vaccine protecting dogs from tick paralysis.
An internet-based bioinformatics toolkit for plant biosecurity diagnosis and surveillance of viruses and viroids
Background Detection and preventing entry of exotic viruses and viroids at the border is critical for protecting plant industries trade worldwide. Existing post entry quarantine screening protocols rely on time-consuming biological indicators and/or molecular assays that require knowledge of infecting viral pathogens. Plants have developed the ability to recognise and respond to viral infections through Dicer-like enzymes that cleave viral sequences into specific small RNA products. Many studies reported the use of a broad range of small RNAs encompassing the product sizes of several Dicer enzymes involved in distinct biological pathways. Here we optimise the assembly of viral sequences by using specific small RNA subsets. Results We sequenced the small RNA fractions of 21 plants held at quarantine glasshouse facilities in Australia and New Zealand. Benchmarking of several de novo assembler tools yielded SPAdes using a kmer of 19 to produce the best assembly outcomes. We also found that de novo assembly using 21–25 nt small RNAs can result in chimeric assemblies of viral sequences and plant host sequences. Such non-specific assemblies can be resolved by using 21–22 nt or 24 nt small RNAs subsets. Among the 21 selected samples, we identified contigs with sequence similarity to 18 viruses and 3 viroids in 13 samples. Most of the viruses were assembled using only 21–22 nt long virus-derived siRNAs (viRNAs), except for one Citrus endogenous pararetrovirus that was more efficiently assembled using 24 nt long viRNAs. All three viroids found in this study were fully assembled using either 21–22 nt or 24 nt viRNAs. Optimised analysis workflows were customised within the Yabi web-based analytical environment. We present a fully automated viral surveillance and diagnosis web-based bioinformatics toolkit that provides a flexible, user-friendly, robust and scalable interface for the discovery and diagnosis of viral pathogens. Conclusions We have implemented an automated viral surveillance and diagnosis (VSD) bioinformatics toolkit that produces improved viruses and viroid sequence assemblies. The VSD toolkit provides several optimised and reusable workflows applicable to distinct viral pathogens. We envisage that this resource will facilitate the surveillance and diagnosis viral pathogens in plants, insects and invertebrates.
Characterization of genome-wide variations induced by gamma-ray radiation in barley using RNA-Seq
Background Artificial mutagenesis not only provides a new approach to increase the diversity of desirable traits for breeding new varieties but are also beneficial for characterizing the genetic basis of functional genes. In recent decades, many mutation genes have been identified which are responsible for phenotype changes in mutants in various species including Arabidopsis and rice. However, the mutation feature in induced mutants and the underlying mechanisms of various types of artificial mutagenesis remain unclear. Results In this study, we adopted a transcriptome sequencing strategy to characterize mutations in coding regions in a barley dwarf mutant induced by gamma-ray radiation. We detected 1193 genetic mutations in gene transcription regions introduced by gamma-ray radiation. Interestingly, up to 97% of the gamma irradiation mutations were concentrated in certain regions in chromosome 5H and chromosome 7H. Of the 26,745 expressed genes, 140 were affected by gamma-ray radiation; their biological functions included cellular and metabolic processes. Conclusion Our results indicate that mutations induced by gamma-ray radiation are not evenly distributed across the whole genome but located in several concentrated regions. Our study provides an overview of the feature of genetic mutations and the genes affected by gamma-ray radiation, which should contribute to a deeper understanding of the mechanisms of radiation mutation and their application in gene function analysis.
Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431
Background Paclitaxel (Taxol™) is an important anticancer drug with a unique mode of action. The biosynthesis of paclitaxel had been considered restricted to the Taxus species until it was discovered in Taxomyces andreanae , an endophytic fungus of T. brevifolia . Subsequently, paclitaxel was found in hazel ( Corylus avellana L.) and in several other endophytic fungi. The distribution of paclitaxel in plants and endophytic fungi and the reported sequence homology of key genes in paclitaxel biosynthesis between plant and fungi species raises the question about whether the origin of this pathway in these two physically associated groups could have been facilitated by horizontal gene transfer. Results The ability of the endophytic fungus of hazel Penicillium aurantiogriseum NRRL 62431 to independently synthesize paclitaxel was established by liquid chromatography-mass spectrometry and proton nuclear magnetic resonance. The genome of Penicillium aurantiogriseum NRRL 62431 was sequenced and gene candidates that may be involved in paclitaxel biosynthesis were identified by comparison with the 13 known paclitaxel biosynthetic genes in Taxus . We found that paclitaxel biosynthetic gene candidates in P. aurantiogriseum NRRL 62431 have evolved independently and that horizontal gene transfer between this endophytic fungus and its plant host is unlikely. Conclusions Our findings shed new light on how paclitaxel-producing endophytic fungi synthesize paclitaxel, and will facilitate metabolic engineering for the industrial production of paclitaxel from fungi.
Scrapheap Challenge: A novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages
Highly fragmented and morphologically indistinct fossil bone is common in archaeological and paleontological deposits but unfortunately it is of little use in compiling faunal assemblages. The development of a cost-effective methodology to taxonomically identify bulk bone is therefore a key challenge. Here, an ancient DNA methodology using high-throughput sequencing is developed to survey and analyse thousands of archaeological bones from southwest Australia. Fossils were collectively ground together depending on which of fifteen stratigraphical layers they were excavated from. By generating fifteen synthetic blends of bulk bone powder, each corresponding to a chronologically distinct layer, samples could be collectively analysed in an efficient manner. A diverse range of taxa, including endemic, extirpated and hitherto unrecorded taxa, dating back to c.46,000 years BP was characterized. The method is a novel, cost-effective use for unidentifiable bone fragments and a powerful molecular tool for surveying fossils that otherwise end up on the taxonomic “scrapheap”.