Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,910 result(s) for "Belyaev, I."
Sort by:
Handling of the generation of primary events in Gauss, the LHCb simulation framework
The LHCb simulation application, Gauss, consists of two independent phases, the generation of the primary event and the tracking of particles produced in the experimental setup. For the LHCb experimental program it is particularly important to model B meson decays: the EvtGen code developed in CLEO and BABAR has been chosen and customized for non-coherent B production as occuring in pp collisions at the LHC. The initial proton-proton collision is provided by a different generator engine, currently PYTHIA 6 for massive production of signal and generic pp collisions events. Beam gas events, background events originating from proton halo, cosmics and calibration events for different detectors can be generated in addition to pp collisions. Different generator packages as available in the physics community or specifically developed in LHCb are used for the different purposes. Running conditions affecting the generated events such as the size of the luminous region, the number of collisions occuring in a bunch crossing and the number of spill-over events from neighbouring bunches are modeled via dedicated algorithms appropriately configured. The design of the generator phase of Gauss will be described: a modular structure with well defined interfaces specific to the various tasks, e.g. pp collisions, particle decays, selections, etc. has been chosen. Different implementations are available for the various tasks allowing selecting and combining them as most appropriate at run time as in the case of PYTHIA 6 for pp collisions or HIJING for beam gas. The advantages of such structure, allowing for example to adopt transparently new generators packages, will be discussed.
Mapping of static magnetic fields near the surface of mobile phones
Whether the use of mobile phones (MP) represents a health hazard is still under debate. As part of the attempts to resolve this uncertainty, there has been an extensive characterization of the electromagnetic fields MP emit and receive. While the radiofrequencies (RF) have been studied exhaustively, the static magnetic fields (SMF) have received much less attention, regardless of the fact there is a wealth of evidence demonstrating their biological effects. We performed 2D maps of the SMF at several distances from the screen of 5 MP (models between 2013 and 2018) using a tri-axis magnetometer. We built a mathematical model to fit our measurements, extrapolated them down to the phones’ screen, and calculated the SMF on the skin of a 3D head model, showing that exposure is in the µT to mT range. Our literature survey prompts the need of further research not only on the biological effects of SMF and their gradients, but also on their combination with extremely low frequency (ELF) and RF fields. The study of combined fields (SMF, ELF, and RF) as similar as possible to the ones that occur in reality should provide a more sensible assessment of potential risks.
Study of the ψ 2(3823) and χ c1(3872) states in B+ → (J/ψπ + π − )K+ decays
Abstract The decays B+ → J/ψπ+π − K+ are studied using a data set corresponding to an integrated luminosity of 9 fb −1 collected with the LHCb detector in proton-proton collisions between 2011 and 2018. Precise measurements of the ratios of branching fractions with the intermediate ψ2(3823), χc1(3872) and ψ(2S) states are reported. The values are B B + → ψ 2 3823 K + × B ψ 2 3823 → J / ψπ + π − B B + → χ c 1 3872 K + × B χ c 1 3872 → J / ψπ + π − = 3.56 ± 0.67 ± 0.11 × 10 − 2 , B B + → ψ 2 3823 K + × B ψ 2 3823 → J / ψπ + π − B B + → ψ 2 S K + × B ψ 2 S → J / ψπ + π − = 1.31 ± 0.25 ± 0.04 × 10 − 3 , B B + → χ c 1 3872 K + × B χ c 1 3872 → J / ψπ + π − B B + → ψ 2 S K + × B ψ 2 S → J / ψπ + π − = 3.69 ± 0.07 ± 0.06 × 10 − 2 , $$ {\\displaystyle \\begin{array}{c}\\frac{{\\mathcal{B}}_{{\\mathrm{B}}^{+}\\to {\\uppsi}_2(3823){\\mathrm{K}}^{+}}\\times {\\mathcal{B}}_{\\uppsi_2(3823)\\to \\mathrm{J}/{\\uppsi \\uppi}^{+}{\\uppi}^{-}}}{{\\mathcal{B}}_{{\\mathrm{B}}^{+}\\to {\\upchi}_{\\mathrm{c}1}(3872){\\mathrm{K}}^{+}}\\times {\\mathcal{B}}_{\\upchi_{\\mathrm{c}1}(3872)\\to \\mathrm{J}/{\\uppsi \\uppi}^{+}{\\uppi}^{-}}}=\\left(3.56\\pm 0.67\\pm 0.11\\right)\\times {10}^{-2},\\\ {}\\frac{{\\mathcal{B}}_{{\\mathrm{B}}^{+}\\to {\\uppsi}_2(3823){\\mathrm{K}}^{+}}\\times {\\mathcal{B}}_{\\uppsi_2(3823)\\to \\mathrm{J}/{\\uppsi \\uppi}^{+}{\\uppi}^{-}}}{{\\mathcal{B}}_{{\\mathrm{B}}^{+}\\to \\uppsi \\left(2\\mathrm{S}\\right){\\mathrm{K}}^{+}}\\times {\\mathcal{B}}_{\\uppsi \\left(2\\mathrm{S}\\right)\\to \\mathrm{J}/{\\uppsi \\uppi}^{+}{\\uppi}^{-}}}=\\left(1.31\\pm 0.25\\pm 0.04\\right)\\times {10}^{-3},\\\ {}\\frac{{\\mathcal{B}}_{\\mathrm{B}+\\to {\\upchi}_{\\mathrm{c}1}(3872){\\mathrm{K}}^{+}}\\times {\\mathcal{B}}_{\\upchi_{\\mathrm{c}1}(3872)\\to \\mathrm{J}/{\\uppsi \\uppi}^{+}{\\uppi}^{-}}}{{\\mathcal{B}}_{{\\mathrm{B}}^{+}\\to \\uppsi \\left(2\\mathrm{S}\\right){\\mathrm{K}}^{+}}\\times {\\mathcal{B}}_{\\uppsi \\left(2\\mathrm{S}\\right)\\to \\mathrm{J}/{\\uppsi \\uppi}^{+}{\\uppi}^{-}}}=\\left(3.69\\pm 0.07\\pm 0.06\\right)\\times {10}^{-2},\\end{array}} $$ where the first uncertainty is statistical and the second is systematic. The decay of B+ → ψ2(3823)K+ with ψ2(3823) → J/ψπ+π − is observed for the first time with a significance of 5.1 standard deviations. The mass differences between the ψ2(3823), χc1(3872) and ψ(2S) states are measured to be m χ c 1 3872 − m ψ 2 3823 = 47.50 ± 0.53 ± 0.13 MeV / c 2 , m ψ 2 3823 − m ψ 2 2 S = 137.98 ± 0.53 ± 0.14 MeV / c 2 , m χ c 1 3872 − m ψ 2 2 S = 185.49 ± 0.06 ± 0.03 MeV / c 2 , $$ {\\displaystyle \\begin{array}{c}{m}_{\\upchi_{\\mathrm{c}1}(3872)}-{m}_{\\uppsi_2(3823)}=47.50\\pm 0.53\\pm 0.13\\;\\mathrm{MeV}/{c}^2,\\\ {}{m}_{\\uppsi_2(3823)}-{m}_{\\uppsi_2\\left(2\\mathrm{S}\\right)}=137.98\\pm 0.53\\pm 0.14\\;\\mathrm{MeV}/{c}^2,\\\ {}{m}_{\\upchi_{\\mathrm{c}1}(3872)}-{m}_{\\uppsi_2\\left(2\\mathrm{S}\\right)}=185.49\\pm 0.06\\pm 0.03\\;\\mathrm{MeV}/{c}^2,\\end{array}} $$ resulting in the most precise determination of the χc1(3872) mass. The width of the ψ2(3823) state is found to be below 5.2 MeV at 90% confidence level. The Breit-Wigner width of the χc1(3872) state is measured to be Γ χ c 1 3872 BW = 0.96 − 0.18 + 0.19 ± 0.21 MeV $$ {\\Gamma}_{\\upchi_{\\mathrm{c}1}(3872)}^{\\mathrm{BW}}={0.96}_{-0.18}^{+0.19}\\pm 0.21\\;\\mathrm{MeV} $$ which is inconsistent with zero by 5.5 standard deviations.
Acoustic Radiation of a Turbulent Boundary Layer Over a Flat Smooth Boundary
A consistent theory of sound generation in a turbulent boundary layer developing over a flat smooth boundary at low Mach numbers is presented. The main source of sound and the long-wavelength part of pressure fluctuations on the boundary are incoming shear (viscous) waves generated by Lighthill quadrupoles in the near-wall region of the turbulent boundary layer. It is shown that with an increase in the Reynolds number (decrease in viscosity), the role of viscosity in sound generation does not decrease, but instead increases. Quantitative estimates of the spectrum of the sound power density generated in a turbulent boundary layer are given.
Physical model for effects of microwaves on nucleoids in living cells: role of carrier frequency, modulation and DC and AC magnetic field
The effect of static and alternating magnetic fields on the conformation of nucleoids in cells of different types is considered. The model of slow and nonuniform rotation of the charged DNA domain is used. An equation is obtained for the resonance frequencies of the alternating magnetic field.
Magneto-convective fluctuation during downward flow of liquid metal in a heated pipe in a transverse magnetic field
An imposed strong magnetic field suppresses turbulence and profoundly changes the nature of the flow of an electrically conducting fluid. We consider this effect for the case of mixed convection flows in pipes and ducts, in which unique regimes characterized by extreme temperature gradients and high-amplitude fluctuations (the so-called magnetoconvective fluctuations) have been recently discovered. The configuration is directly relevant to the design of the liquid-metal components of future nuclear fusion reactors. This work presents the general picture of the flow transformation emerging from the recent numerical studies (DNS - Direct Numerical Simulation), illustrates the key known facts, and outlines the remaining open questions. Implications for fusion reactor technology and novel experimental and numerical methods are also discussed.
Assessment of the State of Economic Security in Russia Using the Example of the Unemployment Rate Indicator: Fractal Analysis Method
Abstract—The article proposes methodological approaches to the verification of indicators of the state of the country’s economic security using the method of fractal analysis. Fractal analysis technologies make it possible to determine the nature and dynamics of changes in the indicator, to verify its values (indicative or critical), and also to reveal the rate at which these states are reached on the time horizon of statistical observations. The unemployment rate indicator is selected as an example.
Measurement of the CKM angle γ using the B ± →†’ D h ± channels
A measurement of the CP-violating observables from B -> (DK +/-)-K-* and B-+/- -> D-*pi(+/-) decays is presented, where D-*(D) is an admixture of D-*0 and D-0 (D-0 and (0)) states and is reconstructed through the decay chains D-*-> D pi(0)/gamma and D -> KS0 pi+pi-/KS0K+K-. The measurement is performed by analysing the signal yield variation across the D decay phase space and is independent of any amplitude model. The data sample used was collected by the LHCb experiment in proton-proton collisions and corresponds to a total integrated luminosity of 9 fb(-1) at centre-of-mass energies of 7, 8 and 13 TeV. The CKM angle gamma is determined to be (69(-14)(+13))degrees using the measured CP-violating observables. The hadronic parameters r(B)(D)*(K +/-),r(B)(D)*(pi +/-),delta(D)(B)*(K +/-),delta(D)(B)*(pi +/-), which are the ratios and strong phase differences between favoured and suppressed B-+/- decays, are also reported.
The Role of Protective Afforestation in Drought and Desertification Control in Agro-Landscapes
This paper reviews the historical use of agro-ameliorative and protective afforestation to combat drought and desertification in agricultural lands. It shows the current state of forest plantations in the arid zone of the Russian Federation and problems associated with wind erosion on pastures. Russia is facing a major ecological and economic challenge due to a growing intensity of development of recurring droughts, dry winds, erosion, wind erosion, and the level of protective afforestation as a branch of the national economy overall and a subdiscipline of science, in particular. This requires adequate public policy decisions, which are stated in the “Strategy for Development of Protective Afforestation in Russia until 2025.” The Strategy determines their direction, as well as volumes and types of the plantations for the period until 2025 and a longer-term perspective on lands from the forest ameliorative fund. This review considers the causes of agro-landscape desertification associated with climate and anthropogenic factors and outlines the countermeasures and technologies for combating this phenomenon.
Overview of turbogenerator monitoring and diagnostic systems
The article considers general approaches and modern monitoring systems for rotary machines of electric generating equipment. The main characteristics of monitoring and diagnostics systems of Russian and foreign manufacturers are presented. Modern trends in the construction of intelligent systems for analyzing the performance of turbo generators and predicting possible failures in order to minimize the cost of repairs and forced shutdown of equipment are outlined. The concept of adaptive-predictive use of rotary machines, the difference from existing systems is the presence of adaptive module that allows to react to unwanted changes in real time and increase the predicted residual resource or eliminate the predicted probability of initially refusal.