Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
2
result(s) for
"Ben-Hamida, Sana, author"
Sort by:
Evolutionary algorithms
by
Ben-Hamida, Sana
,
Pétrowski, Alain
in
Computer algorithms
,
Evolutionary programming (Computer science)
,
Genetic algorithms
2017
Evolutionary algorithms are bio-inspired algorithms based on Darwin's theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods.
In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms.
Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.