Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
49
result(s) for
"Benayahu, Dafna"
Sort by:
A Unique Marine-Derived Collagen: Its Characterization towards Biocompatibility Applications for Tissue Regeneration
2021
Biomedical engineering combines engineering and materials methods to restore, maintain, improve, or replace different types of biological tissues. In tissue engineering, following major injury, a scaffold is designed to support the local growth of cells, enabling the development of new viable tissue. To provide the conditions for the mechanical and structural properties needed for the restored tissue and its appropriate functioning, the scaffold requires specific biochemical properties in order to ensure a correct healing process. The scaffold creates a support system and requires a suitable material that will transduce the appropriate signals for the regenerative process to take place. A scaffold composed of material that mimics natural tissue, rather than a synthetic material, will achieve better results. Here, we provide an overview of natural components of marine-derived origin, the collagen fibers characterization schematic is summarized in the graphical abstract. The use of collagen fibers for biomedical applications and their performances in cell support are demonstrated in an in vitro system and in tissue regeneration in vivo.
Journal Article
Advanced glycation end-products accelerate amyloid deposits in adipocyte’s lipid droplets
2024
Adipose tissue dysfunction is central to insulin resistance, and the emergence of type 2 diabetes (T2D) is associated with elevated levels of carbonyl metabolites from glucose metabolism. In this study, using methylglyoxal (MGO) and glycolaldehyde (GAD) carbonyl metabolites induced protein glycation, leading to misfolding and β-sheet formation and generation of advanced glycation end products (AGEs). The formed AGEs compromise adipocytes activity. Microscopic and spectroscopic assays were used to examine the impact of MGO and GAD on lipid droplet-associated proteins. The results provide information about how these conditions lead to the appearance of glycated and amyloidogenic proteins formation that hinders metabolism and autophagy in adipocytes. We measured the beneficial effects of metformin (MET), an anti-diabetic drug, on misfolded protein as assessed by thioflavin (ThT) spectroscopy and improved autophagy, determined by LC3 staining. In vitro findings were complemented by in vivo analysis of white adipose tissue (WAT), where lipid droplet-associated β-amyloid deposits were predominantly linked to adipose triglyceride lipase (ATGL), a lipid droplet protein. Bioinformatics, imaging, biochemical and MS/MS methods affirm ATGL’s glycation and its role in β-sheet secondary structure formation. Our results highlighted the pronounced presence of amyloidogenic proteins in adipocytes treated with carbonyl compounds, potentially reshaping our understanding of adipocyte altered activity in the context of T2D. This in-depth exploration offers novel perspectives on related pathophysiology and underscores the potential of adipocytes as pivotal therapeutic targets, bridging T2D, amyloidosis, protein glycation, and adipocyte malfunction.
Journal Article
Reduced Satellite Cell Numbers and Myogenic Capacity in Aging Can Be Alleviated by Endurance Exercise
by
Yablonka-Reuveni, Zipora
,
Shefer, Gabi
,
Rauner, Gat
in
Age factors
,
Aging
,
Aging - physiology
2010
Muscle regeneration depends on satellite cells, myogenic stem cells that reside on the myofiber surface. Reduced numbers and/or decreased myogenic aptitude of these cells may impede proper maintenance and contribute to the age-associated decline in muscle mass and repair capacity. Endurance exercise was shown to improve muscle performance; however, the direct impact on satellite cells in aging was not yet thoroughly determined. Here, we focused on characterizing the effect of moderate-intensity endurance exercise on satellite cell, as possible means to attenuate adverse effects of aging. Young and old rats of both genders underwent 13 weeks of treadmill-running or remained sedentary.
Gastrocnemius muscles were assessed for the effect of age, gender and exercise on satellite-cell numbers and myogenic capacity. Satellite cells were identified in freshly isolated myofibers based on Pax7 immunostaining (i.e., ex-vivo). The capacity of individual myofiber-associated cells to produce myogenic progeny was determined in clonal assays (in-vitro). We show an age-associated decrease in satellite-cell numbers and in the percent of myogenic clones in old sedentary rats. Upon exercise, there was an increase in myofibers that contain higher numbers of satellite cells in both young and old rats, and an increase in the percent of myogenic clones derived from old rats. Changes at the satellite cell level in old rats were accompanied with positive effects on the lean-to-fat Gast muscle composition and on spontaneous locomotion levels. The significance of these data is that they suggest that the endurance exercise-mediated boost in both satellite numbers and myogenic properties may improve myofiber maintenance in aging.
Journal Article
Biocompatibility of a Marine Collagen-Based Scaffold In Vitro and In Vivo
by
Benayahu, Yehuda
,
Pomeraniec, Leslie
,
Benayahu, Dafna
in
Alginates
,
Alginates - chemistry
,
Alginic acid
2020
Scaffold material is essential in providing mechanical support to tissue, allowing stem cells to improve their function in the healing and repair of trauma sites and tissue regeneration. The scaffold aids cell organization in the damaged tissue. It serves and allows bio mimicking the mechanical and biological properties of the target tissue and facilitates cell proliferation and differentiation at the regeneration site. In this study, the developed and assayed bio-composite made of unique collagen fibers and alginate hydrogel supports the function of cells around the implanted material. We used an in vivo rat model to study the scaffold effects when transplanted subcutaneously and as an augment for tendon repair. Animals’ well-being was measured by their weight and daily activity post scaffold transplantation during their recovery. At the end of the experiment, the bio-composite was histologically examined, and the surrounding tissues around the implant were evaluated for inflammation reaction and scarring tissue. In the histology, the formation of granulation tissue and fibroblasts that were part of the inclusion process of the implanted material were noted. At the transplanted sites, inflammatory cells, such as plasma cells, macrophages, and giant cells, were also observed as expected at this time point post transplantation. This study demonstrated not only the collagen-alginate device biocompatibility, with no cytotoxic effects on the analyzed rats, but also that the 3D structure enables cell migration and new blood vessel formation needed for tissue repair. Overall, the results of the current study proved for the first time that the implantable scaffold for long-term confirms the well-being of these rats and is correspondence to biocompatibility ISO standards and can be further developed for medical devices application.
Journal Article
Mesenchymal Cell Growth and Differentiation on a New Biocomposite Material: A Promising Model for Regeneration Therapy
2020
Mesenchymal stem cells serve as the body’s reservoir for healing and tissue regeneration. In cases of severe tissue trauma where there is also a need for tissue organization, a scaffold may be of use to support the cells in the damaged tissue. Such a scaffold should be composed of a material that can biomimic the mechanical and biological properties of the target tissues in order to support autologous cell-adhesion, their proliferation, and differentiation. In this study, we developed and assayed a new biocomposite made of unique collagen fibers and alginate hydrogel that was assessed for the ability to support mesenchymal cell-proliferation and differentiation. Analysis over 11 weeks in vitro demonstrated that the scaffold was biocompatible and supports the cells viability and differentiation to produce tissue-like structures or become adipocyte under differentiation medium. When the biocomposite was enriched with nano particles (NPs), mesenchymal cells grew well after uptake of fluorescein isothiocyanate (FITC) labeled NPs, maintained their viability, migrated through the biocomposite, reached, and adhered to the tissue culture dish. These promising findings revealed that the scaffold supports the growth and differentiation of mesenchymal cells that demonstrate their full physiological function with no sign of material toxicity. The cells’ functionality performance indicates and suggests that the scaffold is suitable to be developed as a new medical device that has the potential to support regeneration and the production of functional tissue.
Journal Article
Exploring the Cell Stemness and the Complexity of the Adipose Tissue Niche
2021
Adipose tissue is a complex organ composed of different cellular populations, including mesenchymal stem and progenitor cells, adipocytes, and immune cells such as macrophages and lymphocytes. These cellular populations alter dynamically during aging or as a response to pathophysiology such as obesity. Changes in the various inflammatory cells are associated with metabolic complications and the development of insulin resistance, indicating that immune cells crosstalk with the adipocytes. Therefore, a study of the cell populations in the adipose tissue and the extracellular matrix maintaining the tissue niche is important for the knowledge on the regulatory state of the organ. We used a combination of methods to study various parameters to identify the composition of the resident cells in the adipose tissue and evaluate their profile. We analyzed the tissue structure and cells based on histology, immune fluorescence staining, and flow cytometry of cells present in the tissue in vivo and these markers’ expression in vitro. Any shift in cells’ composition influences self-renewal of the mesenchymal progenitors, and other cells affect the functionality of adipogenesis.
Journal Article
Identification of UDP-Glucuronosyltransferase 2B15 (UGT2B15) as a Target for IGF1 and Insulin Action
2022
Normal growth and development in mammals are tightly controlled by numerous genetic factors and metabolic conditions. The growth hormone (GH)-insulin-like growth factor-1 (IGF1) hormonal axis is a key player in the regulation of these processes. Dysregulation of the GH-IGF1 endocrine system is linked to a number of pathologies, ranging from growth deficits to cancer. Laron syndrome (LS) is a type of dwarfism that results from mutation of the GH receptor (GHR) gene, leading to GH resistance and short stature as well as a number of metabolic abnormalities. Of major clinical relevance, epidemiological studies have shown that LS patients do not develop cancer. While the mechanisms associated with cancer protection in LS have not yet been elucidated, genomic analyses have identified a series of metabolic genes that are over-represented in LS patients. We hypothesized that these genes might constitute novel targets for IGF1 action. With a fold-change of 11.09, UDP-glucuronosyltransferase 2B15 (UGT2B15) was the top up-regulated gene in LS. The UGT2B15 gene codes for an enzyme that converts xenobiotic substances into lipophilic compounds and thereby facilitates their clearance from the body. We investigated the regulation of UGT2B15 gene expression by IGF1 and insulin. Both hormones inhibited UGT2B15 mRNA levels in endometrial and breast cancer cell lines. Regulation of UGT2B15 protein levels by IGF1/insulin, however, was more complex and not always correlated with mRNA levels. Furthermore, UGT2B15 expression was dependent on p53 status. Thus, UGT2B15 mRNA levels were higher in cell lines expressing a wild-type p53 compared to cells containing a mutated p53. Animal studies confirmed an inverse correlation between UGT2B15 and p53 levels. In summary, increased UGT2B15 levels in LS might confer upon patient’s protection from genotoxic damage.
Journal Article
Cell Lineage Analysis of the Mammalian Female Germline
2012
Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.
Journal Article
The Regulation of MS-KIF18A Expression and Cross Talk with Estrogen Receptor
2009
This study provides a novel view on the interactions between the MS-KIF18A, a kinesin protein, and estrogen receptor alpha (ERalpha) which were studied in vivo and in vitro. Additionally, the regulation of MS-KIF18A expression by estrogen was investigated at the gene and protein levels. An association between recombinant proteins; ERalpha and MS-KIF18A was demonstrated in vitro in a pull down assay. Such interactions were proven also for endogenous proteins in MBA-15 cells were detected prominently in the cytoplasm and are up-regulated by estrogen. Additionally, an association between these proteins and the transcription factor NF-kappaB was identified. MS-KIF18A mRNA expression was measured in vivo in relation to age and estrogen level in mice and rats models. A decrease in MS-KIF18A mRNA level was measured in old and in OVX-estrogen depleted rats as compared to young animals. The low MS-KIF18A mRNA expression in OVX rats was restored by estrogen treatment. We studied the regulation of MS-KIF18A transcription by estrogen using the luciferase reporter gene and chromatin immuno-precipitation (ChIP) assays. The luciferase reporter gene assay demonstrated an increase in MS-KIF18A promoter activity in response to 10(-8) M estrogen and 10(-7)M ICI-182,780. Complimentary, the ChIP assay quantified the binding of ERalpha and pcJun to the MS-KIF18A promoter that was enhanced in cells treated by estrogen and ICI-182,780. In addition, cells treated by estrogen expressed higher levels of MS-KIF18A mRNA and protein and the protein turnover in MBA-15 cells was accelerated. Presented data demonstrated that ERalpha is a defined cargo of MS-KIF18A and added novel insight on the role of estrogen in regulation of MS-KIF18A expression both in vivo and in vitro.
Journal Article
SVEP1 is a novel marker of activated pre-determined skeletal muscle satellite cells
by
Shefer, Gabi
,
Benayahu, Dafna
in
Animals
,
Biomarkers - metabolism
,
Bromodeoxyuridine - metabolism
2010
In this study we explored the expression pattern of SVEP1, a novel cell adhesion molecule (CAM), in bona fide satellite cells and their immediate progeny. We show that SVEP1 is expressed in activated satellite cells prior to their determination to the myogenic lineage. SVEP1 was also expressed during early phases of myogenic differentiation through the initial stage of myoblast fusion and myotube formation. The expression of SVEP1 was shown by immunostaining two cell culture systems: freshly isolated myofibers and primary myoblasts. Pax7 was used to pinpoint satellite cells situated in their niche on myofibers, and activated satellite cells were determined based on BrdU incorporation (Pax7(+)/BrdU(+)cells). MyoD marked satellite cells fated to undergo myogenesis as well as proliferating and differentiating myoblasts. Differentiating myoblasts and myotubes were identified based on their sarcomeric myosin expression. We showed that SVEP1 was specifically expressed in pre-determined activated satellite cells (Pax7(+)/ BrdU(+) /MyoD(-)) accounting for about 24% of total satellite cells. On the other hand, SVEP1 expression was absent in quiescent satellite cells (Pax7(+)/BrdU(-)/MyoD(-)). Moreover, based on MyoD/sarcomeric myosin co-expression SVEP1 was shown to be expressed throughout the early phases of myogenesis up until myoblast fusion and myotube formation. A decline in SVEP1 expression occurred upon myotube maturation. We suggest SVEP1 as a potential biomarker for pre-fated satellite cells. The impact of this finding is that it may allow scrutinizing signals that affect differentiation commitment. Thus, holds a therapeutic potential for maladies that involve deregulated stem cell fate-decision.
Journal Article