Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Bender, Friederike L."
Sort by:
Psychometric validation of the Vaccination Attitudes Examination (VAX) scale in German pre-pandemic and mid-pandemic samples
Despite the public health value of immunizations, vaccine hesitancy is a widespread phenomenon and received special attention during the global COVID-19 pandemic. The Vaccination Attitudes Examination (VAX) Scale aims to identify anti-vaccination attitudes for understanding vaccine hesitancy. The present study is the validation of the German version of the VAX scale in pre-/mid-pandemic samples. All individuals completed an online-survey assessing prior and expected future vaccination behaviors, further constructs associated with vaccine hesitancy, as well as anti-vaccination attitudes using the translated VAX scale among others. In a first study, 297 individuals were surveyed before the COVID-19 pandemic. A second study included 260 individuals recruited during the COVID-19 pandemic. For validation, two confirmatory factor analyses have been conducted. Reliability measures (internal consistency, test–retest-correlation) were determined. The four subscales were confirmed by Confirmation Factor Analysis with a very good to excellent fit. The subscales showed good to excellent reliability and convergent validity determinants. Average VAX values significantly distinguished between individuals who had previously received or refused immunization and predicted expected vaccination behavior. The German translation of the VAX scale is effective in identifying anti-vaccination attitudes and can be used for further research on anti-vaccination attitudes and vaccine hesitancy.
Frequency of Adverse Events in the Placebo Arms of COVID-19 Vaccine Trials
Adverse events (AEs) after placebo treatment are common in randomized clinical drug trials. Systematic evidence regarding these nocebo responses in vaccine trials is important for COVID-19 vaccination worldwide especially because concern about AEs is reported to be a reason for vaccination hesitancy. To compare the frequencies of AEs reported in the placebo groups of COVID-19 vaccine trials with those reported in the vaccine groups. For this systematic review and meta-analysis, the Medline (PubMed) and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched systematically using medical subheading terms and free-text keywords for trials of COVID-19 vaccines published up to July 14, 2021. Randomized clinical trials of COVID-19 vaccines that investigated adults aged 16 years or older were selected if they assessed solicited AEs within 7 days of injection, included an inert placebo arm, and provided AE reports for both the vaccine and placebo groups separately. Full texts were reviewed for eligibility by 2 independent reviewers. Data extraction and quality assessment were performed independently by 2 reviewers, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline and using the Cochrane risk-of-bias tool. Meta-analyses were based on random-effects models. The primary outcomes were the proportions of placebo recipients reporting overall, systemic, and local (injection-site) AEs as well as logarithmic odds ratios (ORs) to evaluate group differences. Outcomes were tested for significance using z tests with 95% CIs. Twelve articles with AE reports for 45 380 participants (22 578 placebo recipients and 22 802 vaccine recipients) were analyzed. After the first dose, 35.2% (95% CI, 26.7%-43.7%) of placebo recipients experienced systemic AEs, with headache (19.3%; 95% CI, 13.6%-25.1%) and fatigue (16.7%; 95% CI, 9.8%-23.6%) being most common. After the second dose, 31.8% (95% CI, 28.7%-35.0%) of placebo recipients reported systemic AEs. The ratio between placebo and vaccine arms showed that nocebo responses accounted for 76.0% of systemic AEs after the first COVID-19 vaccine dose and for 51.8% after the second dose. Significantly more vaccine recipients reported AEs, but the group difference for systemic AEs was small after the first dose (OR, -0.47; 95% CI, -0.54 to -0.40; P < .001; standardized mean difference, -0.26; 95% CI, -0.30 to -0.22) and large after the second dose (OR, -1.36; 95% CI, -1.86 to -0.86; P < .001; standardized mean difference, -0.75; 95% CI, -1.03 to -0.47). In this systematic review and meta-analysis, significantly more AEs were reported in vaccine groups compared with placebo groups, but the rates of reported AEs in the placebo arms were still substantial. Public vaccination programs should consider these high rates of AEs in placebo arms.
Absorbing aerosols over Asia - an inter-model and model-observation comparison study using CAM5.3-Oslo
Aerosol absorption constitutes a significant component of the total radiative effect of aerosols, and hence its representation in general circulation models is crucial to radiative forcing estimates. We use here multiple observations to evaluate the performance of CAM5.3-Oslo with respect to its aerosol representation. CAM5.3-Oslo is the atmospheric component of the earth system model NorESM1.2 and shows on average an underestimation of aerosol absorption in the focus region over East and South Asia and a strong aerosol absorption overestimation in desert and arid regions compared to observations and other AeroCom phase III models. We explore the reasons of the model spread and find that it is related to the column burden and residence time of absorbing aerosols, in particular black carbon and dust. We conduct further sensitivity simulations with CAM5.3-Oslo to identify processes which are most important for modelled aerosol absorption. The sensitivity experiments target aerosol optical properties, and contrast their impact with effects from changes in emissions and deposition processes, and the driving meteorology. An improved agreement with observations was found with the use of a refined emission data set, transient emissions and assimilation of meteorological observations. Changes in optical properties of absorbing aerosols can also reduce the under- and overestimation of aerosol absorption in the model. However, changes in aerosol absorption strength between the sensitivity experiments are small compared to the inter-model spread among the AeroCom phase III models.
Vertical profiles of optical and microphysical particle properties above the northern Indian Ocean during CARDEX 2012
A detailed analysis of optical and microphysical properties of aerosol particles during the dry winter monsoon season above the northern Indian Ocean is presented. The Cloud Aerosol Radiative Forcing Experiment (CARDEX), conducted from 16 February to 30 March 2012 at the Maldives Climate Observatory on Hanimaadhoo island (MCOH) in the Republic of the Maldives, used autonomous unmanned aerial vehicles (AUAV) to perform vertical in situ measurements of particle number concentration, particle number size distribution as well as particle absorption coefficients. These measurements were used together with surface- based Mini Micro Pulse Lidar (MiniMPL) observations and aerosol in situ and off-line measurements to investigate the vertical distribution of aerosol particles.Air masses were mainly advected over the Indian subcontinent and the Arabian Peninsula. The mean surface aerosol number concentration was 1717 ± 604 cm−3 and the highest values were found in air masses from the Bay of Bengal and Indo-Gangetic Plain (2247 ± 370 cm−3). Investigations of the free tropospheric air showed that elevated aerosol layers with up to 3 times higher aerosol number concentrations than at the surface occurred mainly during periods with air masses originating from the Bay of Bengal and the Indo-Gangetic Plain. This feature is different compared to what was observed during the Indian Ocean Experiment (INDOEX) conducted in winter 1999, where aerosol number concentrations generally decreased with height. In contrast, lower particle absorption at the surface (σabs(520 nm) = 8.5 ± 4.2 Wm−1) was found during CARDEX compared to INDOEX 1999.Layers with source region specific single-scattering albedo (SSA) values were derived by combining vertical in situ particle absorption coefficients and scattering coefficients calculated with Mie theory. These SSA layers were utilized to calculate vertical particle absorption profiles from MiniMPL profiles. SSA surface values for 550 nm for dry conditions were found to be 0.94 ± 0.02 and 0.91 ± 0.02 for air masses from the Arabian Sea (and Middle East countries) and India (and Bay of Bengal), respectively. Lidar-derived particle absorption coefficient profiles showed both a similar magnitude and structure as the in situ profiles measured with the AUAV. However, primarily due to insufficient accuracy in the SSA estimates, the lidar-derived absorption coefficient profiles have large uncertainties and are generally weakly correlated to vertically in situ measured particle absorption coefficients.Furthermore, the mass absorption efficiency (MAE) for the northern Indian Ocean during the dry monsoon season was calculated to determine equivalent black carbon (EBC) concentrations from particle absorption coefficient measurements. A mean MAE of 11.6 and 6.9 m2 g−1 for 520 and 880 nm, respectively, was found, likely representing internally mixed BC containing particles. Lower MAE values for 880 and 520 nm were found for air masses originating from dust regions such as the Arabian Peninsula and western Asia (MAE(880 nm)  = 5.6 m2 g−1, MAE(520 nm)  = 9.5 m2 g−1) or from closer source regions as southern India (MAE(880 nm)  = 4.3 m2 g−1, MAE(520 nm)  = 7.3 m2 g−1).