Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
491 result(s) for "Benedetti, Francesco"
Sort by:
Inflammatory mediators in major depression and bipolar disorder
Major depressive disorder (MDD) and bipolar disorder (BD) are highly disabling illnesses defined by different psychopathological, neuroimaging, and cognitive profiles. In the last decades, immune dysregulation has received increasing attention as a central factor in the pathophysiology of these disorders. Several aspects of immune dysregulations have been investigated, including, low-grade inflammation cytokines, chemokines, cell populations, gene expression, and markers of both peripheral and central immune activation. Understanding the distinct immune profiles characterizing the two disorders is indeed of crucial importance for differential diagnosis and the implementation of personalized treatment strategies. In this paper, we reviewed the current literature on the dysregulation of the immune response system focusing our attention on studies using inflammatory markers to discriminate between MDD and BD. High heterogeneity characterized the available literature, reflecting the heterogeneity of the disorders. Common alterations in the immune response system include high pro-inflammatory cytokines such as IL-6 and TNF-α. On the contrary, a greater involvement of chemokines and markers associated with innate immunity has been reported in BD together with dynamic changes in T cells with differentiation defects during childhood which normalize in adulthood, whereas classic mediators of immune responses such as IL-4 and IL-10 are present in MDD together with signs of immune-senescence.
All roads lead to the default-mode network—global source of DMN abnormalities in major depressive disorder
Major depressive disorder (MDD) is a psychiatric disorder characterized by abnormal resting state functional connectivity (rsFC) in various neural networks and especially in default-mode network (DMN). However, inconsistent findings, i.e., increased and decreased DMN rsFC, have been reported, which raise the question for the source of DMN changes in MDD. Testing whether the DMN abnormalities in MDD can be traced to either a local, i.e., intra-network, or a global, i.e., inter-network, source, we conducted a novel sequence of rsFC analyses, i.e., global FC, intra-network FC, and inter-network FC. Moreover, all analyses were conducted without global signal regression (non-GSR) and with GSR in order to identify the impact of specifically the global component of functional connectivity on within-network functional connectivity within specifically the DMN. In MDD our findings demonstrate (i) increased representation of global signal correlation (GSCORR) in DMN regions, as confirmed independently by degree of centrality (DC) and by an independent DMN template, (ii) increased within-network DMN rsFC, (iii) highly increased inter-network rsFC of both lower- and higher order non-DMN networks with DMN, (iv) high accuracy in classifying MDD vs. healthy subjects by using GSCORR as predictor. Further supporting the global, i.e., non-DMN source of within-network rsFC of the DMN, all results were obtained only when including the global signal, i.e., non-GSR, but not when conducting GSR. Together, we show for the first time increased global signal representation within rsFC of DMN as stemming from inter-network sources as distinguished from local sources, i.e., within- or intra-DMN.
Residual clinical damage after COVID-19: A retrospective and prospective observational cohort study
Data on residual clinical damage after Coronavirus disease-2019 (COVID-19) are lacking. The aims of this study were to investigate whether COVID-19 leaves behind residual dysfunction, and identify patients who might benefit from post-discharge monitoring. All patients aged ≥18 years admitted to the Emergency Department (ED) for COVID-19, and evaluated at post-discharge follow-up between 7 April and 7 May, 2020, were enrolled. Primary outcome was need of follow-up, defined as the presence at follow-up of at least one among: respiratory rate (RR) >20 breaths/min, uncontrolled blood pressure (BP) requiring therapeutic change, moderate to very severe dyspnoea, malnutrition, or new-onset cognitive impairment, according to validated scores. Post-traumatic stress disorder (PTSD) served as secondary outcome. 185 patients were included. Median [interquartile range] time from hospital discharge to follow-up was 23 [20-29] days. 109 (58.9%) patients needed follow-up. At follow-up evaluation, 58 (31.3%) patients were dyspnoeic, 41 (22.2%) tachypnoeic, 10 (5.4%) malnourished, 106 (57.3%) at risk for malnutrition. Forty (21.6%) patients had uncontrolled BP requiring therapeutic change, and 47 (25.4%) new-onset cognitive impairment. PTSD was observed in 41 (22.2%) patients. At regression tree analysis, the ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) and body mass index (BMI) at ED presentation, and age emerged as independent predictors of the need of follow-up. Patients with PaO2/FiO2 <324 and BMI ≥33 Kg/m2 had the highest odds to require follow-up. Among hospitalised patients, age ≥63 years, or age <63 plus non-invasive ventilation or diabetes identified those with the highest probability to need follow-up. PTSD was independently predicted by female gender and hospitalisation, the latter being protective (odds ratio, OR, 4.03, 95% confidence interval, CI, 1.76 to 9.47, p 0.0011; OR 0.37, 95% CI 0.14 to 0.92, p 0.033, respectively). COVID-19 leaves behind physical and psychological dysfunctions. Follow-up programmes should be implemented for selected patients.
Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies
Background Most of our social interactions involve perception of emotional information from the faces of other people. Furthermore, such emotional processes are thought to be aberrant in a range of clinical disorders, including psychosis and depression. However, the exact neurofunctional maps underlying emotional facial processing are not well defined. Methods Two independent researchers conducted separate comprehensive PubMed (1990 to May 2008) searches to find all functional magnetic resonance imaging (fMRI) studies using a variant of the emotional faces paradigm in healthy participants. The search terms were: “fMRI AND happy faces,” “fMRI AND sad faces,” “fMRI AND fearful faces,” “fMRI AND angry faces,” “fMRI AND disgusted faces” and “fMRI AND neutral faces.” We extracted spatial coordinates and inserted them in an electronic database. We performed activation likelihood estimation analysis for voxel-based meta-analyses. Results Of the originally identified studies, 105 met our inclusion criteria. The overall database consisted of 1785 brain coordinates that yielded an overall sample of 1600 healthy participants. Quantitative voxel-based meta-analysis of brain activation provided neurofunctional maps for 1) main effect of human faces; 2) main effect of emotional valence; and 3) modulatory effect of age, sex, explicit versus implicit processing and magnetic field strength. Processing of emotional faces was associated with increased activation in a number of visual, limbic, temporoparietal and prefrontal areas; the putamen; and the cerebellum. Happy, fearful and sad faces specifically activated the amygdala, whereas angry or disgusted faces had no effect on this brain region. Furthermore, amygdala sensitivity was greater for fearful than for happy or sad faces. Insular activation was selectively reported during processing of disgusted and angry faces. However, insular sensitivity was greater for disgusted than for angry faces. Conversely, neural response in the visual cortex and cerebellum was observable across all emotional conditions. Limitations Although the activation likelihood estimation approach is currently one of the most powerful and reliable meta-analytical methods in neuroimaging research, it is insensitive to effect sizes. Conclusion Our study has detailed neurofunctional maps to use as normative references in future fMRI studies of emotional facial processing in psychiatric populations. We found selective differences between neural networks underlying the basic emotions in limbic and insular brain regions.
Long-term consequences of COVID-19 on cognitive functioning up to 6 months after discharge: role of depression and impact on quality of life
Neurologic and psychiatric symptoms have been reported in the months following the infection with COVID-19. A low-grade inflammation has been associated both with depression and cognitive symptoms, suggesting a link between these disorders. The aim of the study is to investigate cognitive functioning 6 months following hospital discharge for COVID-19, the impact of depression, and the consequences on quality of life. Ninety-two COVID-19 survivors evaluated at 1-month follow-up, 122 evaluated at 3 months and 98 evaluated at 6 months performed neuropsychological and psychiatric evaluations and were compared with a healthy comparison group (HC) of 165 subjects and 165 patients with major depression (MDD). Cognitive performances were adjusted for age, sex, and education. Seventy-nine percent of COVID-19 survivors at 1 month and 75% at 3- and 6-month follow-up showed cognitive impairment in at least one cognitive function. No significant difference in cognitive performances was observed between 1-, 3-, and 6-months follow-up. COVID-19 patients performed worse than HC but better than MDD in psychomotor coordination and speed of information processing. No difference between COVID-19 survivors and MDD was observed for verbal fluency, and executive functions, which were lower than in HC. Finally, COVID-19 survivors performed the same as HC in working memory and verbal memory. The factor that most affected cognitive performance was depressive psychopathology which, in turn, interact with cognitive functions in determining quality of life. Our results confirm that COVID-19 sequelae include signs of cognitive impairment which persist up to 6 months after hospital discharge and affect quality of life.
Sleep Deprivation in Mood Disorders
Growing clinical evidence in support of the efficacy and safety of sleep deprivation (SD), and its biological mechanisms of action suggest that this technique can now be included among the first-line antidepressant treatment strategies for mood disorders. SD targets the broadly defined depressive syndrome, and can be administered according to several different treatment schedules: total versus partial, single versus repeated, alone or combined with antidepressant drugs, mood stabilizers, or other chronotherapeutic techniques, such as light therapy and sleep phase advance. The present review focuses on clinical evidence about the place of SD in therapy, its indications, dosage and timing of the therapeutic wake, interactions with other treatments, precautions and contraindications, adverse reactions, mechanism of action, and comparative efficacy, with the aim of providing the clinical psychiatrist with an updated, concise guide to its application.
Chronobiology of Bipolar Disorder: Therapeutic Implication
Multiple lines of evidence suggest that psychopathological symptoms of bipolar disorder arise in part from a malfunction of the circadian system, linking the disease with an abnormal internal timing. Alterations in circadian rhythms and sleep are core elements in the disorders, characterizing both mania and depression and having recently been shown during euthymia. Several human genetic studies have implicated specific genes that make up the genesis of circadian rhythms in the manifestation of mood disorders with polymorphisms in molecular clock genes not only showing an association with the disorder but having also been linked to its phenotypic particularities. Many medications used to treat the disorder, such as antidepressant and mood stabilizers, affect the circadian clock. Finally, circadian rhythms and sleep researches have been the starting point of the developing of chronobiological therapies. These interventions are safe, rapid and effective and they should be considered first-line strategies for bipolar depression.
Circulating cytotoxic immune cell composition, activation status and toxins expression associate with white matter microstructure in bipolar disorder
Patients with bipolar disorder (BD) show higher immuno-inflammatory setpoints, with in vivo alterations in white matter (WM) microstructure and post-mortem infiltration of T cells in the brain. Cytotoxic CD8 + T cells can enter and damage the brain in inflammatory disorders, but little is known in BD. Our study aimed to investigate the relationship between cytotoxic T cells and WM alterations in BD. In a sample of 83 inpatients with BD in an active phase of illness (68 depressive, 15 manic), we performed flow cytometry immunophenotyping to investigate frequencies, activation status, and expression of cytotoxic markers in CD8 + and tested for their association with diffusion tensor imaging (DTI) measures of WM microstructure. Frequencies of naïve and activated CD8 + cell populations expressing Perforin, or both Perforin and Granzyme, negatively associated with WM microstructure. CD8 + Naïve cells negative for Granzyme and Perforin positively associates with indexes of WM integrity, while the frequency of CD8 + memory cells negatively associates with index of WM microstructure, irrespective of toxins expression. The resulting associations involve measures representative of orientational coherence and myelination of the fibers (FA and RD), suggesting disrupted oligodendrocyte-mediated myelination. These findings seems to support the hypothesis that immunosenescence (less naïve, more memory T cells) can detrimentally influence WM microstructure in BD and that peripheral CD8 + T cells may participate in inducing an immune-related WM damage in BD mediated by killer proteins.
Chronobiological therapy for mood disorders
Alteration of the sleep-wake cycle and of the sleep structure are core symptoms of a major depressive episode, and occur both in course of bipolar disorder and of major depressive disorder. Many other circadian rhythms, such as the daily profiles of body temperature, cortisol, thyrotropin, prolactin, growth hormone, melatonin and excretion of various metabolites in the urine, are disrupted in depressed patients, both unipolar and bipolar individuals. These disrupted rhythms seem to return to normality with patient recovery. Research on circadian rhythms and sleep have led to the definition of nonpharmacological therapies of mood disorder that can be used in everyday practice. These strategies, named chronotherapeutics, are based on controlled exposures to environmental stimuli that act on biological rhythms, and demonstrate good efficacy in the treatment of illness episodes. They include manipulations of the sleep-wake rhythm (such as partial and total sleep deprivation, and sleep phase advance) and of the exposure to the light-dark cycle (light therapy and dark therapy). In recent years, an increasing literature about the safety and efficacy of chronobiological treatments in everyday psychiatric settings has supported the inclusion of these techniques among the first-line antidepressant strategies for patients affected by mood disorders.