Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
161 result(s) for "Benfenati, Fabio"
Sort by:
Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy
Inherited retinal dystrophies and late-stage age-related macular degeneration, for which treatments remain limited, are among the most prevalent causes of legal blindness. Retinal prostheses have been developed to stimulate the inner retinal network; however, lack of sensitivity and resolution, and the need for wiring or external cameras, have limited their application. Here we show that conjugated polymer nanoparticles (P3HT NPs) mediate light-evoked stimulation of retinal neurons and persistently rescue visual functions when subretinally injected in a rat model of retinitis pigmentosa. P3HT NPs spread out over the entire subretinal space and promote light-dependent activation of spared inner retinal neurons, recovering subcortical, cortical and behavioural visual responses in the absence of trophic effects or retinal inflammation. By conferring sustained light sensitivity to degenerate retinas after a single injection, and with the potential for high spatial resolution, P3HT NPs provide a new avenue in retinal prosthetics with potential applications not only in retinitis pigmentosa, but also in age-related macular degeneration.Semiconducting polymer nanoparticles can act as light-sensitive interfaces with retinal neurons, and on microinjection in the eye, rescue vision in retinas affected by photoreceptor degeneration, offering a potential new treatment option for inherited retinal dystrophies and late-stage age-related macular degeneration.
Clinical translation of nanoparticles for neural stimulation
Nanoparticles enable wireless neural stimulation without the need for genetic manipulation. However, challenges remain for their potential application in the cure of human neurodegenerative diseases. A careful analysis of the different nanomaterials and energy sources that proved effective in animal models will direct their clinical translatability.
A refined model of claudin-15 tight junction paracellular architecture by molecular dynamics simulations
Tight-junctions between epithelial cells of biological barriers are specialized molecular structures that regulate the flux of solutes across the barrier, parallel to cell walls. The tight-junction backbone is made of strands of transmembrane proteins from the claudin family, but the molecular mechanism of its function is still not completely understood. Recently, the crystal structure of a mammalian claudin-15 was reported, displaying for the first time the detailed features of transmembrane and extracellular domains. Successively, a structural model of claudin-15-based paracellular channels has been proposed, suggesting a putative assembly that illustrates how claudins associate in the same cell (via cis interactions) and across adjacent cells (via trans interactions). Although very promising, the model offers only a static conformation, with residues missing in the most important extracellular regions and potential steric clashes. Here we present detailed atomic models of paracellular single and double pore architectures, obtained from the putative assembly and refined via structural modeling and all-atom molecular dynamics simulations in double membrane bilayer and water environment. Our results show an overall stable configuration of the complex with a fluctuating pore size. Extracellular residue loops in trans interaction are able to form stable contacts and regulate the size of the pore, which displays a stationary radius of 2.5-3.0 Å at the narrowest region. The side-by-side interactions of the cis configuration are preserved via stable hydrogen bonds, already predicted by cysteine crosslinking experiments. Overall, this work introduces an improved version of the claudin-15-based paracellular channel model that strengthens its validity and that can be used in further computational studies to understand the structural features of tight-junctions regulation.
Role of pericytes in blood–brain barrier preservation during ischemia through tunneling nanotubes
Crosstalk mechanisms between pericytes, endothelial cells, and astrocytes preserve integrity and function of the blood-brain-barrier (BBB) under physiological conditions. Long intercellular channels allowing the transfer of small molecules and organelles between distant cells called tunneling nanotubes (TNT) represent a potential substrate for energy and matter exchanges between the tripartite cellular compartments of the BBB. However, the role of TNT across BBB cells under physiological conditions and in the course of BBB dysfunction is unknown. In this work, we analyzed the TNT’s role in the functional dialog between human brain endothelial cells, and brain pericytes co-cultured with human astrocytes under normal conditions or after exposure to ischemia/reperfusion, a condition in which BBB breakdown occurs, and pericytes participate in the BBB repair. Using live time-lapse fluorescence microscopy and laser-scanning confocal microscopy, we found that astrocytes form long TNT with pericytes and endothelial cells and receive functional mitochondria from both cell types through this mechanism. The mitochondrial transfer also occurred in multicellular assembloids of human BBB that reproduce the three-dimensional architecture of the BBB. Under conditions of ischemia/reperfusion, TNT formation is upregulated, and astrocytes exposed to oxygen-glucose deprivation were rescued from apoptosis by healthy pericytes through TNT-mediated transfer of functional mitochondria, an effect that was virtually abolished in the presence of TNT-destroying drugs. The results establish a functional role of TNT in the crosstalk between BBB cells and demonstrate that TNT-mediated mitochondrial transfer from pericytes rescues astrocytes from ischemia/reperfusion-induced apoptosis. Our data confirm that the pericytes might play a pivotal role in preserving the structural and functional integrity of BBB under physiological conditions and participate in BBB repair in brain diseases.
A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness
The degeneration of photoreceptors in the retina is one of the major causes of adult blindness in humans. Unfortunately, no effective clinical treatments exist for the majority of retinal degenerative disorders. Here we report on the fabrication and functional validation of a fully organic prosthesis for long-term in vivo subretinal implantation in the eye of Royal College of Surgeons rats, a widely recognized model of retinitis pigmentosa. Electrophysiological and behavioural analyses reveal a prosthesis-dependent recovery of light sensitivity and visual acuity that persists up to 6–10 months after surgery. The rescue of the visual function is accompanied by an increase in the basal metabolic activity of the primary visual cortex, as demonstrated by positron emission tomography imaging. Our results highlight the possibility of developing a new generation of fully organic, highly biocompatible and functionally autonomous photovoltaic prostheses for subretinal implants to treat degenerative blindness. A retinal prosthesis fabricated from an organic photovoltaic polymer can restore degenerative blindness in vivo , and over long implantation periods.
A hybrid bioorganic interface for neuronal photoactivation
A key issue in the realization of retinal prosthetic devices is reliable transduction of information carried by light into specific patterns of electrical activity in visual information processing networks. Soft organic materials can be used to couple artificial sensors with neuronal tissues. Here, we interface a network of primary neurons with an organic blend. We show that primary neurons can be successfully grown onto the polymer layer without affecting the optoelectronic properties of the active material or the biological functionality of neuronal network. Moreover, action potentials can be triggered in a temporally reliable and spatially selective manner with short pulses of visible light. Our results may lead to new neuronal communication and photo manipulation techniques, thus paving way to the development of artificial retinas and other neuroprosthetic interfaces based on organic photodetectors. Interfacing neurons with artificial functional materials could aid the development of neurological prosthetic devices. Here, primary neurons are incorporated into a polymer layer without adversely affecting their properties; the advance may contribute to the development of artificial retinas.
TBC1D24 regulates axonal outgrowth and membrane trafficking at the growth cone in rodent and human neurons
Mutations in TBC1D24 are described in patients with a spectrum of neurological diseases, including mild and severe epilepsies and complex syndromic phenotypes such as Deafness, Onycodystrophy, Osteodystrophy, Mental Retardation and Seizure (DOORS) syndrome. The product of TBC1D24 is a multifunctional protein involved in neuronal development, regulation of synaptic vesicle trafficking, and protection from oxidative stress. Although pathogenic mutations in TBC1D24 span the entire coding sequence, no clear genotype/phenotype correlations have emerged. However most patients bearing predicted loss of function mutations exhibit a severe neurodevelopmental disorder. Aim of the study is to investigate the impact of TBC1D24 knockdown during the first stages of neuronal differentiation when axonal specification and outgrowth take place. In rat cortical primary neurons silenced for TBC1D24, we found defects in axonal specification, the maturation of axonal initial segment and action potential firing. The axonal phenotype was accompanied by an impairment of endocytosis at the growth cone and an altered activation of the TBC1D24 molecular partner ADP ribosylation factor 6. Accordingly, acute knockdown of TBC1D24 in cerebrocortical neurons in vivo analogously impairs callosal projections. The axonal defect was also investigated in human induced pluripotent stem cell-derived neurons from patients carrying TBC1D24 mutations. Reprogrammed neurons from a patient with severe developmental encephalopathy show significant axon formation defect that were absent from reprogrammed neurons of a patient with mild early onset epilepsy. Our data reveal that alterations of membrane trafficking at the growth cone induced by TBC1D24 loss of function cause axonal and excitability defects. The axonal phenotype correlates with the disease severity and highlight an important role for TBC1D24 in connectivity during brain development.
A polymer optoelectronic interface restores light sensitivity in blind rat retinas
Interfacing organic electronics with biological substrates offers new possibilities for biotechnology by taking advantage of the beneficial properties exhibited by organic conducting polymers. These polymers have been used for cellular interfaces in several applications, including cellular scaffolds, neural probes, biosensors and actuators for drug release. Recently, an organic photovoltaic blend has been used for neuronal stimulation via a photo-excitation process. Here, we document the use of a single-component organic film of poly(3-hexylthiophene) (P3HT) to trigger neuronal firing upon illumination. Moreover, we demonstrate that this bio–organic interface restores light sensitivity in explants of rat retinas with light-induced photoreceptor degeneration. These findings suggest that all-organic devices may play an important future role in subretinal prosthetic implants. The popular organic semiconductor P3HT, which is commonly used in polymer solar cells and photodetectors, is demonstrated to be able to act as a biocompatible optoelectronic interface for the retina of blind rats.
Neuronal firing modulation by a membrane-targeted photoswitch
Optical technologies allowing modulation of neuronal activity at high spatio-temporal resolution are becoming paramount in neuroscience. In this respect, azobenzene-based photoswitches are promising nanoscale tools for neuronal photostimulation. Here we engineered a light-sensitive azobenzene compound (Ziapin2) that stably partitions into the plasma membrane and causes its thinning through trans-dimerization in the dark, resulting in an increased membrane capacitance at steady state. We demonstrated that in neurons loaded with the compound, millisecond pulses of visible light induce a transient hyperpolarization followed by a delayed depolarization that triggers action potential firing. These effects are persistent and can be evoked in vivo up to 7 days, proving the potential of Ziapin2 for the modulation of membrane capacitance in the millisecond timescale, without directly affecting ion channels or local temperature.Light-sensitive azobenzene compounds can be engineered to stably partition into the plasma membrane, thus causing its thinning in the dark and relaxation upon light stimulation. In neurons, the resulting light-dependent change in membrane capacitance induces a transient hyperpolarization followed by rebound depolarization and action potential firing.