Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
747 result(s) for "Benjamin, Simon C."
Sort by:
Efficient Variational Quantum Simulator Incorporating Active Error Minimization
One of the key applications for quantum computers will be the simulation of other quantum systems that arise in chemistry, materials science, etc., in order to accelerate the process of discovery. It is important to ask the following question: Can this simulation be achieved using near-future quantum processors, of modest size and under imperfect control, or must it await the more distant era of large-scale fault-tolerant quantum computing? Here, we propose a variational method involving closely integrated classical and quantum coprocessors. We presume that all operations in the quantum coprocessor are prone to error. The impact of such errors is minimized by boosting them artificially and then extrapolating to the zero-error case. In comparison to a more conventional optimized Trotterization technique, we find that our protocol is efficient and appears to be fundamentally more robust against error accumulation.
Practical Quantum Error Mitigation for Near-Future Applications
It is vital to minimize the impact of errors for near-future quantum devices that will lack the resources for full fault tolerance. Two quantum error mitigation (QEM) techniques have been introduced recently, namely, error extrapolation [Y. Li and S. C. Benjamin, Phys. Rev. X 7, 021050 (2017); K. Temme et al., Phys. Rev. Lett. 119, 180509 (2017)] and quasiprobability decomposition [K. Temme et al., Phys. Rev. Lett. 119, 180509 (2017)]. To enable practical implementation of these ideas, here we account for the inevitable imperfections in the experimentalist’s knowledge of the error model itself. We describe a protocol for systematically measuring the effect of errors so as to design efficient QEM circuits. We find that the effect of localized Markovian errors can be fully eliminated by inserting or replacing some gates with certain single-qubit Clifford gates and measurements. Finally, having introduced an exponential variant of the extrapolation method we contrast the QEM techniques using exact numerical simulation of up to 19 qubits in the context of a “swap” test circuit. Our optimized methods dramatically reduce the circuit’s output error without increasing the qubit count.
Variational-state quantum metrology
Quantum technologies exploit entanglement to enhance various tasks beyond their classical limits including computation, communication and measurements. Quantum metrology aims to increase the precision of a measured quantity that is estimated in the presence of statistical errors using entangled quantum states. We present a novel approach for finding (near) optimal states for metrology in the presence of noise, using variational techniques as a tool for efficiently searching the high-dimensional space of quantum states, which would be classically intractable. We comprehensively explore systems consisting of up to 9 qubits and find new highly entangled states that are not symmetric under permutations and non-trivially outperform previously known states up to a constant factor 2. We consider a range of environmental noise models; while passive quantum states cannot achieve a fundamentally superior scaling (as established by prior asymptotic results) we do observe a significant absolute quantum advantage. We finally outline a possible experimental setup for variational quantum metrology which can be implemented in near-term hardware.
QuEST and High Performance Simulation of Quantum Computers
We introduce QuEST, the Quantum Exact Simulation Toolkit, and compare it to ProjectQ, qHipster and a recent distributed implementation of Quantum++. QuEST is the first open source, hybrid multithreaded and distributed, GPU accelerated simulator of universal quantum circuits. Embodied as a C library, it is designed so that a user’s code can be deployed seamlessly to any platform from a laptop to a supercomputer. QuEST is capable of simulating generic quantum circuits of general one and two-qubit gates and multi-qubit controlled gates, on pure and mixed states, represented as state-vectors and density matrices, and under the presence of decoherence. Using the ARCUS and ARCHER supercomputers, we benchmark QuEST’s simulation of random circuits of up to 38 qubits, distributed over up to 2048 compute nodes, each with up to 24 cores. We directly compare QuEST’s performance to ProjectQ’s on single machines, and discuss the differences in distribution strategies of QuEST, qHipster and Quantum++. QuEST shows excellent scaling, both strong and weak, on multicore and distributed architectures.
Variational ansatz-based quantum simulation of imaginary time evolution
Imaginary time evolution is a powerful tool for studying quantum systems. While it is possible to simulate with a classical computer, the time and memory requirements generally scale exponentially with the system size. Conversely, quantum computers can efficiently simulate quantum systems, but not non-unitary imaginary time evolution. We propose a variational algorithm for simulating imaginary time evolution on a hybrid quantum computer. We use this algorithm to find the ground-state energy of many-particle systems; specifically molecular hydrogen and lithium hydride, finding the ground state with high probability. Our method can also be applied to general optimisation problems and quantum machine learning. As our algorithm is hybrid, suitable for error mitigation and can exploit shallow quantum circuits, it can be implemented with current quantum computers.
Freely Scalable Quantum Technologies Using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links
Exquisite quantum control has now been achieved in small ion traps, in nitrogen-vacancy centers and in superconducting qubit clusters. We can regard such a system as a universal cell with diverse technological uses from communication to large-scale computing, provided that the cell is able to network with others and overcome any noise in the interlinks. Here, we show that loss-tolerant entanglement purification makes quantum computing feasible with the noisy and lossy links that are realistic today: With a modestly complex cell design, and using a surface code protocol with a network noise threshold of 13.3%, we find that interlinks that attempt entanglement at a rate of 2 MHz but suffer 98% photon loss can result in kilohertz computer clock speeds (i.e., rate of high-fidelity stabilizer measurements). Improved links would dramatically increase the clock speed. Our simulations employ local gates of a fidelity already achieved in ion trap devices.
Exploring ab initio machine synthesis of quantum circuits
Gate-level quantum circuits are often derived manually from higher level algorithms. While this suffices for small implementations and demonstrations, ultimately automatic circuit design will be required to realise complex algorithms using hardware-specific operations and connectivity. Therefore, ab initio creation of circuits within a machine, either a classical computer or a hybrid quantum–classical device, is of key importance. We explore a range of established and novel techniques for the synthesis of new circuit structures, the optimisation of parameterised circuits, and the efficient removal of low-value gates via the quantum geometric tensor. Using these techniques we tackle the tasks of automatic encoding of unitary processes and translation (recompilation) of a circuit from one form to another. Using emulated quantum computers with various noise-free gate sets we provide simple examples involving up to 10 qubits, corresponding to 20 qubits in the augmented space we use. Further applications of specific relevance to chemistry modelling are considered in a sister paper, ‘Exploiting subspace constraints and ab initio variational methods for quantum chemistry’. The emulation environments used were QuEST , QuESTlink and pyQuEST . All resources will be made openly accessible and are currently available upon request.
Exploiting subspace constraints and ab initio variational methods for quantum chemistry
Variational methods offer a highly promising route to exploiting quantum computers for chemistry tasks. Here we employ methods described in a sister paper to the present report, entitled exploring ab initio machine synthesis of quantum circuits , in order to solve problems using adaptively evolving quantum circuits. Consistent with prior authors we find that this approach can outperform human-designed circuits such as the coupled-cluster or hardware-efficient ansätze, and we make comparisons for larger instances up to 14 qubits Moreover we introduce a novel approach to constraining the circuit evolution in the physically relevant subspace, finding that this greatly improves performance and compactness of the circuits. We consider both static and dynamics properties of molecular systems. The emulation environment used is QuESTlink all resources are open source and linked from this paper.
Resource Costs for Fault-Tolerant Linear Optical Quantum Computing
Linear optical quantum computing (LOQC) seems attractively simple: Information is borne entirely by light and processed by components such as beam splitters, phase shifters, and detectors. However, this very simplicity leads to limitations, such as the lack of deterministic entangling operations, which are compensated for by using substantial hardware overheads. Here, we quantify the resource costs for full-scale LOQC by proposing a specific protocol based on the surface code. With the caveat that our protocol can be further optimized, we report that the required number of physical components is at least 5 orders of magnitude greater than in comparable matter-based systems. Moreover, the resource requirements grow further if the per-component photon-loss rate is worse than 10−3 or the per-component noise rate is worse than 10−5 . We identify the performance of switches in the network as the single most influential factor influencing resource scaling.
Minimally complex ion traps as modules for quantum communication and computing
Optically linked ion traps are promising as components of network-based quantum technologies, including communication systems and modular computers. Experimental results achieved to date indicate that the fidelity of operations within each ion trap module will be far higher than the fidelity of operations involving the links; fortunately internal storage and processing can effectively upgrade the links through the process of purification. Here we perform the most detailed analysis to date on this purification task, using a protocol which is balanced to maximise fidelity while minimising the device complexity and the time cost of the process. Moreover we 'compile down' the quantum circuit to device-level operations including cooling and shuttling events. We find that a linear trap with only five ions (two of one species, three of another) can support our protocol while incorporating desirable features such as global control, i.e. laser control pulses need only target an entire zone rather than differentiating one ion from its neighbour. To evaluate the capabilities of such a module we consider its use both as a universal communications node for quantum key distribution, and as the basic repeating unit of a quantum computer. For the latter case we evaluate the threshold for fault tolerant quantum computing using the surface code, finding acceptable fidelities for the 'raw' entangling link as low as 83% (or under 75% if an additional ion is available).