Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
42 result(s) for "Benke, Paul J"
Sort by:
Analyses of oligodontia phenotypes and genetic etiologies
Oligodontia is the congenital absence of six or more teeth and comprises the more severe forms of tooth agenesis. Many genes have been implicated in the etiology of tooth agenesis, which is highly variable in its clinical presentation. The purpose of this study was to identify associations between genetic mutations and clinical features of oligodontia patients. An online systematic search of papers published from January 1992 to June 2021 identified 381 oligodontia cases meeting the eligibility criteria of causative gene mutation, phenotype description, and radiographic records. Additionally, ten families with oligodontia were recruited and their genetic etiologies were determined by whole-exome sequence analyses. We identified a novel mutation in WNT10A (c.99_105dup) and eight previously reported mutations in WNT10A (c.433 G > A; c.682 T > A; c.318 C > G; c.511.C > T; c.321 C > A), EDAR (c.581 C > T), and LRP6 (c.1003 C > T, c.2747 G > T). Collectively, 20 different causative genes were implicated among those 393 cases with oligodontia. For each causative gene, the mean number of missing teeth per case and the frequency of teeth missing at each position were calculated. Genotype–phenotype correlation analysis indicated that molars agenesis is more likely linked to PAX9 mutations, mandibular first premolar agenesis is least associated with PAX9 mutations. Mandibular incisors and maxillary lateral incisor agenesis are most closely linked to EDA mutations.
Reanalysis of Clinical Exome Sequencing Data
As knowledge about genetic causes of disease improves, periodic reanalysis of clinical exome sequence could yield new genetic information. This study showed that a reanalysis of data initially analyzed about 6 years ago almost doubled the diagnostic yield and that a semiautomated approach to sequence analysis had a diagnostic sensitivity of 92.9%.
Mutations in SLC5A6 associated with brain, immune, bone, and intestinal dysfunction in a young child
The human sodium-dependent multivitamin transporter (hSMVT) is a product of the SLC5A6 gene and mediates biotin, pantothenic acid, and lipoate uptake in a variety of cellular systems. We report here the identification of mutations R94X, a premature termination, and R123L, a dysfunctional amino acid change, both in exon 3 of the SLC5A6 gene in a child using whole genome-scanning. At 15 months of age, the child showed failure to thrive, microcephaly and brain changes on MRI, cerebral palsy and developmental delay, variable immunodeficiency, and severe gastro-esophageal reflux requiring a gastrostomy tube/fundoplication, osteoporosis, and pathologic bone fractures. After identification of the SLC5A6 mutations, he responded clinically to supplemental administration of excess biotin, pantothenic acid, and lipoate with improvement in clinical findings. Functionality of the two mutants was examined by 3 H-biotin uptake assay following expression of the mutants in human-derived intestinal HuTu-80 and brain U87 cells. The results showed severe impairment in biotin uptake in cells expressing the mutants compared to those expressing wild-type hSMVT. Live cell confocal imaging of cells expressing the mutants showed the R94X mutant to be poorly tolerated and localized in the cytoplasm, while the R123L mutant was predominantly retained in the endoplasmic reticulum. This is the first reporting of mutations in the SLC5A6 gene in man, and suggests that this gene is important for brain development and a wide variety of clinical functions.
Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse
Cayman ataxia is a recessive congenital ataxia restricted to one area of Grand Cayman Island 1 , 2 . Comparative mapping suggested that the locus on 19p13.3 associated with Cayman ataxia might be homologous to the locus on mouse chromosome 10 associated with the recessive ataxic mouse mutant jittery. Screening genes in the region of overlap identified mutations in a novel predicted gene in three mouse jittery alleles, including the first mouse mutation caused by an Alu-related (B1 element) insertion. We found two mutations exclusively in all individuals with Cayman ataxia. The gene ATCAY or Atcay encodes a neuron-restricted protein called caytaxin. Caytaxin contains a CRAL-TRIO motif common to proteins that bind small lipophilic molecules. Mutations in another protein containing a CRAL-TRIO domain, alpha-tocopherol transfer protein (TTPA), cause a vitamin E–responsive ataxia. Three-dimensional protein structural modeling predicts that the caytaxin ligand is more polar than vitamin E. Identification of the caytaxin ligand may help develop a therapy for Cayman ataxia.
Array-Based FMR1 Sequencing and Deletion Analysis in Patients with a Fragile X Syndrome–Like Phenotype
Fragile X syndrome (FXS) is caused by loss of function mutations in the FMR1 gene. Trinucleotide CGG-repeat expansions, resulting in FMR1 gene silencing, are the most common mutations observed at this locus. Even though the repeat expansion mutation is a functional null mutation, few conventional mutations have been identified at this locus, largely due to the clinical laboratory focus on the repeat tract. To more thoroughly evaluate the frequency of conventional mutations in FXS-like patients, we used an array-based method to sequence FMR1 in 51 unrelated males exhibiting several features characteristic of FXS but with normal CGG-repeat tracts of FMR1. One patient was identified with a deletion in FMR1, but none of the patients were found to have other conventional mutations. These data suggest that missense mutations in FMR1 are not a common cause of the FXS phenotype in patients who have normal-length CGG-repeat tracts. However, screening for small deletions of FMR1 may be of clinically utility.
Monosomy chromosome 21 compensated by 21q22.11q22.3 duplication in a case with small size and minor anomalies
Background Partial monosomy 21 is a rare finding with variable sizes and deletion breakpoints, presenting with a broad spectrum of phenotypes. Case presentation We report a 10-month-old boy with short stature, minor anomalies and mild motor delay. The patient had a monosomy 21 and duplication of the 21q22.11q22.3 region on the remaining derivative chromosome 21 which represents a partial 21q uniparental disomy of paternal origin, upd(21q22.11q22.3)pat. The abnormalities were characterized by karyotyping, FISH, chromosomal microarray, and genotyping. Conclusions This is the first case showing a monosomy 21 compensated by upd(21q22.11q22.3) as a mechanism of genomic rescue. Because there is no strong evidence showing imprinting on chromosome 21, the uniparental disomy itself is not associated with abnormal phenotype but has reduced phenotype severity of monosomy 21. We reviewed the previously published cases with isolated 21q deletions and identified a common deletion of 5.7 Mb associated with low birth weight, length and head circumference in the 21q21.2 region.
Missense variants in the chromatin remodeler CHD1 are associated with neurodevelopmental disability
BackgroundThe list of Mendelian disorders of the epigenetic machinery has expanded rapidly during the last 5 years. A few missense variants in the chromatin remodeler CHD1 have been found in several large-scale sequencing efforts focused on uncovering the genetic aetiology of autism.ObjectivesTo explore whether variants in CHD1 are associated with a human phenotype.MethodsWe used GeneMatcher to identify other physicians caring for patients with variants in CHD1. We also explored the epigenetic consequences of one of these variants in cultured fibroblasts.ResultsHere we describe six CHD1 heterozygous missense variants in a cohort of patients with autism, speech apraxia, developmental delay and facial dysmorphic features. Importantly, three of these variants occurred de novo. We also report on a subject with a de novo deletion covering a large fraction of the CHD1 gene without any obvious neurological phenotype. Finally, we demonstrate increased levels of the closed chromatin modification H3K27me3 in fibroblasts from a subject carrying a de novo variant in CHD1.ConclusionsOur results suggest that variants in CHD1 can lead to diverse phenotypic outcomes; however, the neurodevelopmental phenotype appears to be limited to patients with missense variants, which is compatible with a dominant negative mechanism of disease.
Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds
WNT10A is a signaling molecule involved in tooth development, and WNT10A defects are associated with tooth agenesis. We characterized Wnt10a null mice generated by the knockout mouse project (KOMP) and six families with WNT10A mutations, including a novel p.Arg104Cys defect, in the absence of EDA, EDAR, or EDARADD variations. Wnt10a null mice exhibited supernumerary mandibular fourth molars, and smaller molars with abnormal cusp patterning and root taurodontism. Wnt10a−/− incisors showed distinctive apical–lingual wedge‐shaped defects. These findings spurred us to closely examine the dental phenotypes of our WNT10A families. WNT10A heterozygotes exhibited molar root taurodontism and mild tooth agenesis (with incomplete penetrance) in their permanent dentitions. Individuals with two defective WNT10A alleles showed severe tooth agenesis and had fewer cusps on their molars. The misshapened molar crowns and roots were consistent with the Wnt10a null phenotype and were not previously associated with WNT10A defects. The missing teeth contrasted with the presence of supplemental teeth in the Wnt10a null mice and demonstrated mammalian species differences in the roles of Wnt signaling in early tooth development. We conclude that molar crown and root dysmorphologies are caused by WNT10A defects and that the severity of the tooth agenesis correlates with the number of defective WNT10A alleles. We characterized the dentitions of Wnt10a null mice and observed mandibular fourth molars, abnormal molar cusp patterning, molar root taurodontism, and distinctive basal–lingual wedge‐shaped defects in mandibular incisors. We characterized the dentitions six families with WNT10A mutations in the absence of EDA, EDAR, or EDARADD defects and observed, in heterozygotes, molar root taurodontism and mild tooth agenesis, and in homozygotes, severe tooth agenesis and molars with fewer cusps. This expands the known clinical phenotype in WNT10A families and demonstrates differences in the roles of Wnt signaling in early tooth development between mice and humans.
Retinoic Acid Embryopathy
Retinoic acid, an analogue of vitamin A, is known to be teratogenic in laboratory animals and has recently been implicated in a few clinical case reports. To study the human teratogenicity of this agent, we investigated 154 human pregnancies with fetal exposure to isotretinoin, a retinoid prescribed for severe recalcitrant cystic acne. The outcomes were 95 elective abortions, 26 infants without major malformations, 12 spontaneous abortions, and 21 malformed infants. A subset of 36 of the 154 pregnancies was observed prospectively. The outcomes in this cohort were 8 spontaneous abortions, 23 normal infants, and 5 malformed infants. Exposure to isotretinoin was associated with an unusually high relative risk for a group of selected major malformations (relative risk = 25.6; 95 per cent confidence interval, 11.4 to 57.5). Among the 21 malformed infants we found a characteristic pattern of malformation involving craniofacial, cardiac, thymic, and central nervous system structures. The malformations included microtia/anotia (15 infants), micrognathia (6), cleft palate (3), conotruncal heart defects and aortic-arch abnormalities (8), thymic defects (7), retinal or optic-nerve abnormalities (4), and central nervous system malformations (18). The pattern of malformation closely resembled that produced in animal studies of retinoid teratogenesis. It is possible that a major mechanism of isotretinoin teratogenesis is a deleterious effect on cephalic neural-crest cell activity that results in the observed craniofacial, cardiac, and thymic malformations. (N Engl J Med 1985;313:837–41.) Retinoic acids are analogues of vitamin A that display some of its biologic activities. Retinoic acids cannot replace the visual or reproductive functions of vitamin A, but they can assume its roles in stimulating bone growth and epithelial differentiation. Because of their effects on epithelial-cell differentiation and their relatively low toxicity as compared with vitamin A, retinoic acids were developed for the treatment of severe cystic acne and other chronic dermatoses. 1 , 2 The first of these retinoic acids, isotretinoin (13- cis -retinoic acid), was licensed in the United States in September 1982 with the brand name Accutane. According to marketing research . . .