Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
1,426
result(s) for
"Bernard, Daniel J."
Sort by:
Intra-pituitary follicle-stimulating hormone signaling regulates hepatic lipid metabolism in mice
2023
Inter-organ communication is a major hallmark of health and is often orchestrated by hormones released by the anterior pituitary gland. Pituitary gonadotropes secrete follicle-stimulating hormone (FSH) and luteinizing hormone (LH) to regulate gonadal function and control fertility. Whether FSH and LH also act on organs other than the gonads is debated. Here, we find that gonadotrope depletion in adult female mice triggers profound hypogonadism, obesity, glucose intolerance, fatty liver, and bone loss. The absence of sex steroids precipitates these phenotypes, with the notable exception of fatty liver, which results from ovary-independent actions of FSH. We uncover paracrine FSH action on pituitary corticotropes as a mechanism to restrain the production of corticosterone and prevent hepatic steatosis. Our data demonstrate that functional communication of two distinct hormone-secreting cell populations in the pituitary regulates hepatic lipid metabolism.
Gonadotropes in the pituitary secrete follicle-stimulating hormone and luteinizing hormone to control gonadal function and fertility, but whether they exert actions on extra-gonadal organs is not fully understood. Here the authors report that gonadotropes regulate liver steatosis independent of the ovaries in mice.
Journal Article
The orphan ligand, activin C, signals through activin receptor-like kinase 7
by
Castonguay, Roselyne
,
Thompson, Thomas B
,
Bernard, Daniel J
in
Activin
,
Activin C
,
activin-like kinase 7
2022
Activin ligands are formed from two disulfide-linked inhibin β (Inhβ) subunit chains. They exist as homodimeric proteins, as in the case of activin A (ActA; InhβA/InhβA) or activin C (ActC; InhβC/InhβC), or as heterodimers, as with activin AC (ActAC; InhβA:InhβC). While the biological functions of ActA and activin B (ActB) have been well characterized, little is known about the biological functions of ActC or ActAC. One thought is that the InhβC chain functions to interfere with ActA production by forming less active ActAC heterodimers. Here, we assessed and characterized the signaling capacity of ligands containing the InhβC chain. ActC and ActAC activated SMAD2/3-dependent signaling via the type I receptor, activin receptor-like kinase 7 (ALK7). Relative to ActA and ActB, ActC exhibited lower affinity for the cognate activin type II receptors and was resistant to neutralization by the extracellular antagonist, follistatin. In mature murine adipocytes, which exhibit high ALK7 expression, ActC elicited a SMAD2/3 response similar to ActB, which can also signal via ALK7. Collectively, these results establish that ActC and ActAC are active ligands that exhibit a distinct signaling receptor and antagonist profile compared to other activins.
Journal Article
The extant immunoglobulin superfamily, member 1 gene results from an ancestral gene duplication in eutherian mammals
by
Harrison, Paul M.
,
Smith, Courtney L.
,
Bernard, Daniel J.
in
Amino acids
,
Biology and Life Sciences
,
Computer and Information Sciences
2022
Immunoglobulin superfamily, member 1 (IGSF1) is a transmembrane glycoprotein with high expression in the mammalian pituitary gland. Mutations in the IGSF1 gene cause congenital central hypothyroidism in humans. The IGSF1 protein is co-translationally cleaved into N- and C-terminal domains (NTD and CTD), the latter of which is trafficked to the plasma membrane and appears to be the functional portion of the molecule. Though the IGSF1-NTD is retained in the endoplasmic reticulum and has no apparent function, it has a high degree of sequence identity with the IGSF1-CTD and is conserved across mammalian species. Based upon phylogenetic analyses, we propose that the ancestral IGSF1 gene encoded the IGSF1-CTD, which was duplicated and integrated immediately upstream of itself, yielding a larger protein encompassing the IGSF1-NTD and IGSF1-CTD. The selective pressures favoring the initial gene duplication and subsequent retention of a conserved IGSF1-NTD are unresolved.
Journal Article
Structures of TGF-β with betaglycan and signaling receptors reveal mechanisms of complex assembly and signaling
2025
Betaglycan (BG) is a transmembrane co-receptor of the transforming growth factor-β (TGF-β) family of signaling ligands. It is essential for embryonic development, tissue homeostasis and fertility in adults. It functions by enabling binding of the three TGF-β isoforms to their signaling receptors and is additionally required for inhibin A (InhA) activity. Despite its requirement for the functions of TGF-βs and InhA in vivo, structural information explaining BG ligand selectivity and its mechanism of action is lacking. Here, we determine the structure of TGF-β bound both to BG and the signaling receptors, TGFBR1 and TGFBR2. We identify key regions responsible for ligand engagement, which has revealed binding interfaces that differ from those described for the closely related co-receptor of the TGF-β family, endoglin, thus demonstrating remarkable evolutionary adaptation to enable ligand selectivity. Finally, we provide a structural explanation for the hand-off mechanism underlying TGF-β signal potentiation.
Betaglycan is a co-receptor for selective TGF-β family ligands. Here, the authors solve its structure in complex with TGF-β and the signaling receptors, which explains its ligand selectivity and reveals its mechanism in potentiating TGF-β signaling.
Journal Article
Structural basis for potency differences between GDF8 and GDF11
2017
Background
Growth/differentiation factor 8 (GDF8) and GDF11 are two highly similar members of the transforming growth factor β (TGFβ) family. While GDF8 has been recognized as a negative regulator of muscle growth and differentiation, there are conflicting studies on the function of GDF11 and whether GDF11 has beneficial effects on age-related dysfunction. To address whether GDF8 and GDF11 are functionally identical, we compared their signaling and structural properties.
Results
Here we show that, despite their high similarity, GDF11 is a more potent activator of SMAD2/3 and signals more effectively through the type I activin-like receptor kinase receptors ALK4/5/7 than GDF8. Resolution of the GDF11:FS288 complex, apo-GDF8, and apo-GDF11 crystal structures reveals unique properties of both ligands, specifically in the type I receptor binding site. Lastly, substitution of GDF11 residues into GDF8 confers enhanced activity to GDF8.
Conclusions
These studies identify distinctive structural features of GDF11 that enhance its potency, relative to GDF8; however, the biological consequences of these differences remain to be determined.
Journal Article
The short mRNA isoform of the immunoglobulin superfamily, member 1 gene encodes an intracellular glycoprotein
2017
Mutations in the immunoglobulin superfamily, member 1 gene (IGSF1/Igsf1) cause an X-linked form of central hypothyroidism. The canonical form of IGSF1 is a transmembrane glycoprotein with 12 immunoglobulin (Ig) loops. The protein is co-translationally cleaved into two sub-domains. The carboxyl-terminal domain (CTD), which contains the last 7 Ig loops, is trafficked to the plasma membrane. Most pathogenic mutations in IGSF1 map to the portion of the gene encoding the CTD. IGSF1/Igsf1 encodes a variety of transcripts. A little studied, but abundant splice variant encodes a truncated form of the protein, predicted to contain the first 2 Ig loops of the full-length IGSF1. The protein (hereafter referred to as IGSF1 isoform 2 or IGSF1-2) is likely retained in most individuals with IGSF1 mutations. Here, we characterized basic biochemical properties of the protein as a foray into understanding its potential function. IGSF1-2, like the IGSF1-CTD, is a glycoprotein. In both mouse and rat, the protein is N-glycosylated at a single asparagine residue in the first Ig loop. Contrary to earlier predictions, neither the murine nor rat IGSF1-2 is secreted from heterologous or homologous cells. In addition, neither protein associates with the plasma membrane. Rather, IGSF1-2 appears to be retained in the endoplasmic reticulum. Whether the protein plays intracellular functions or is trafficked through the secretory pathway under certain physiologic or pathophysiologic conditions has yet to be determined.
Journal Article
Addition of a carboxy-terminal tail to the normally tailless gonadotropin-releasing hormone receptor impairs fertility in female mice
2021
Gonadotropin-releasing hormone (GnRH) is the primary neuropeptide controlling reproduction in vertebrates. GnRH stimulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) synthesis via a G-protein-coupled receptor, GnRHR, in the pituitary gland. In mammals, GnRHR lacks a C-terminal cytosolic tail (Ctail) and does not exhibit homologous desensitization. This might be an evolutionary adaptation that enables LH surge generation and ovulation. To test this idea, we fused the chicken GnRHR Ctail to the endogenous murine GnRHR in a transgenic model. The LH surge was blunted, but not blocked in these mice. In contrast, they showed reductions in FSH production, ovarian follicle development, and fertility. Addition of the Ctail altered the nature of agonist-induced calcium signaling required for normal FSH production. The loss of the GnRHR Ctail during mammalian evolution is unlikely to have conferred a selective advantage by enabling the LH surge. The adaptive significance of this specialization remains to be determined.
Journal Article
The CpG Island in the Murine Foxl2 Proximal Promoter Is Differentially Methylated in Primary and Immortalized Cells
2013
Forkhead box L2 (Foxl2), a member of the forkhead transcription factor family, plays important roles in pituitary follicle-stimulating hormone synthesis and in ovarian maintenance and function. Mutations in the human FOXL2 gene cause eyelid malformations and premature ovarian failure. FOXL2/Foxl2 is expressed in pituitary gonadotrope and thyrotrope cells, the perioptic mesenchyme of the developing eyelid, and ovarian granulosa cells. The mechanisms governing this cell-restricted expression have not been described. We mapped the Foxl2 transcriptional start site in immortalized murine gonadotrope-like cells, LβT2, by 5' rapid amplification of cDNA ends and then PCR amplified approximately 1 kb of 5' flanking sequence from murine genomic DNA. When ligated into a reporter plasmid, the proximal promoter conferred luciferase activity in both homologous (LβT2) and, unexpectedly, heterologous (NIH3T3) cells. In silico analyses identified a CpG island in the proximal promoter and 5' untranslated region, suggesting that Foxl2 transcription might be regulated epigenetically. Indeed, pyrosequencing and quantitative analysis of DNA methylation using real-time PCR revealed Foxl2 proximal promoter hypomethylation in homologous compared to some, though not all, heterologous cell lines. The promoter was also hypomethylated in purified murine gonadotropes. In vitro promoter methylation completely silenced reporter activity in heterologous and homologous cells. Collectively, the data suggest that differential proximal promoter DNA methylation may contribute to cell-specific Foxl2 expression in some cellular contexts. However, gonadotrope-specific expression of the gene cannot be explained by promoter hypomethylation alone.
Journal Article
NR5A2 Regulates Lhb and Fshb Transcription in Gonadotrope-Like Cells In Vitro, but Is Dispensable for Gonadotropin Synthesis and Fertility In Vivo
2013
Successful mammalian reproduction depends on proper synthesis of the pituitary-derived glycoprotein hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Several transcription factors cooperate to activate cell-specific and hormone-regulated expression of the gonadotropin beta subunits (Lhb and Fshb). Among these, NR5A1 (steroidogenic factor 1; SF1) has been shown to directly bind to the Lhb promoter, mediate basal and gonadotropin-releasing hormone (GnRH)-stimulated Lhb transcription, and possibly directly regulate Fshb expression. Recently, the closely-related NR5A2 was shown to activate the rat Lhb promoter in vitro. Here, we further characterized the role of NR5A2 in regulating gonadotropin synthesis. Ectopically expressed NR5A2 directly activated the murine Lhb promoter in a manner identical to that of NR5A1, whereas neither factor activated the murine Fshb promoter. In LβT2 gonadotrope-like cells, depletion of endogenous NR5A1 or NR5A2 impaired basal and GnRH-stimulated Lhb and Fshb transcription. To analyze the physiological role of NR5A2 in gonadotropes in vivo, we generated mice with a gonadotrope-specific deletion of Nr5a2. In contrast with our in vitro data, these mice had normal pituitary Lhb and Fshb expression and intact fertility. Together, our data establish that NR5A2 can act in a non-redundant manner to regulate Lhb and Fshb transcription in vitro, but is dispensable in vivo.
Journal Article
From Consternation to Revelation: Discovery of a Role for IGSF1 in Pituitary Control of Thyroid Function
2018
Immunoglobulin superfamily, member 1 (IGSF1) is a transmembrane glycoprotein highly expressed in the mammalian pituitary gland. Shortly after its discovery in 1998, the protein was proposed to function as a coreceptor for inhibins (and was even temporarily renamed inhibin binding protein). However, subsequent investigations, both in vitro and in vivo, failed to support a role for IGSF1 in inhibin action. Research on IGSF1 nearly ground to a halt until 2011, when next-generation sequencing identified mutations in the X-linked IGSF1 gene in boys and men with congenital central hypothyroidism. IGSF1 was localized to thyrotrope cells, implicating the protein in pituitary control of the thyroid. Investigations in two Igsf1 knockout mouse models converged to show that IGSF1 deficiency leads to reduced expression of the receptor for thyrotropin-releasing hormone (TRH) and impaired TRH stimulation of thyrotropin secretion, providing a candidate mechanism for the central hypothyroidism observed in patients. Nevertheless, the normal functions of IGSF1 in thyrotropes and other cells remain unresolved. Moreover, IGSF1 mutations are also commonly associated with other clinical phenotypes, including prolactin and growth hormone dysregulation, and macroorchidism. How the loss of IGSF1 produces these characteristics is unknown. Although early studies of IGSF1 ran into roadblocks and blind alleys, armed with the results of detailed clinical investigations, powerful mouse models, and new reagents, the field is now poised to discover IGSF1’s function in endocrine tissues, including the pituitary and testes.This review discusses how loss of function mutations in the IGSF1 gene may cause central hypothyroidism and identifies areas of current and future investigation.
Journal Article