Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,521 result(s) for "Bernard, Frédéric A."
Sort by:
The hippocampal region is necessary for text comprehension and memorization: a combined VBM/DTI study in neuropsychological patients
According to the Construction-Integration model (Kintsch 1988 ; Kintsch 1998 ), two forms of representation are activated during the reading and the comprehension of a text: 1) the text base, which includes semantic propositions and 2) the situation model, corresponding to the integration of the information contained in the text to the memories and knowledge of the reader. Functional neuroimaging studies in healthy subjects have shown that the text base is underpinned by frontal regions and lateral temporal regions whereas the situation model would rather depend on the posterior cingulate cortex, the precuneus and other regions depending on the dimension studied. However, the brain regions highlighted so far were only involved in comprehension and not necessary for this cognitive ability. For the first time, we explored the brain structures necessary to understand texts using a combined VBM/DTI approach in neuropsychological patients with whom we obtained comprehension scores (text base and situation model) after the reading of narrative texts. To our great surprise and contrary to our hypotheses, which were based on the results of functional neuroimaging studies, our own results show that it is the hippocampal region that is necessary to activate and memorize/remember the text base and the situation model. The highlighting of a link between the integrity of a portion of the uncinate fasciculus which is well known to play a role in semantic processing and the performance scores of the text base suggests that the hippocampal region is necessary not only for the retrieval of the text base and of the situation model thanks to episodic memory, but also for the activation of the text base during the reading and the comprehension of a text.
Change detection in children with autism: An auditory event-related fMRI study
Autism involves impairments in communication and social interaction, as well as high levels of repetitive, stereotypic, and ritualistic behaviours, and extreme resistance to change. This latter dimension, whilst required for a diagnosis, has received less research attention. We hypothesise that this extreme resistance to change in autism is rooted in atypical processing of unexpected stimuli. We tested this using auditory event-related fMRI to determine regional brain activity associated with passive detection of infrequently occurring frequency-deviant and complex novel sounds in a no-task condition. Participants were twelve 10- to 15-year-old children with autism and a group of 12 age- and sex-matched healthy controls. During deviance detection, significant activation common to both groups was located in the superior temporal and inferior frontal gyri. During ‘novelty detection’, both groups showed activity in the superior temporal gyrus, the temporo-parietal junction, the superior and inferior frontal gyri, and the cingulate gyrus. Children with autism showed reduced activation of the left anterior cingulate cortex during both deviance and novelty detection. During novelty detection, children with autism also showed reduced activation in the bilateral temporo-parietal region and in the right inferior and middle frontal areas. This study confirms previous evidence from ERP studies of atypical brain function related to automatic change detection in autism. Abnormalities involved a cortical network known to have a role in attention switching and attentional resource distribution. These results throw light on the neurophysiological processes underlying autistic ‘resistance to change’.
Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease
Gait disorders and postural instability, which are commonly observed in elderly patients with Parkinson disease (PD), respond poorly to dopaminergic agents used to treat other parkinsonian symptoms. The brain structures underlying gait disorders and falls in PD and aging remain to be characterized. Using functional MRI in healthy human subjects, we have shown here that activity of the mesencephalic locomotor region (MLR), which is composed of the pedunculopontine nucleus (PPN) and the adjacent cuneiform nucleus, was modulated by the speed of imagined gait, with faster imagined gait activating a discrete cluster within the MLR. Furthermore, the presence of gait disorders in patients with PD and in aged monkeys rendered parkinsonian by MPTP intoxication correlated with loss of PPN cholinergic neurons. Bilateral lesioning of the cholinergic part of the PPN induced gait and postural deficits in nondopaminergic lesioned monkeys. Our data therefore reveal that the cholinergic neurons of the PPN play a central role in controlling gait and posture and represent a possible target for pharmacological treatment of gait disorders in PD.
The hippocampal region is involved in successful recognition of both remote and recent famous faces
There is currently a debate regarding the precise role of medial temporal regions in memory, in particular regarding the time scale of their involvement in conscious recollection of information stored in long-term memory. Using event-related fMRI, we have attempted to contribute to this debate by identifying brain regions associated with the successful recognition of famous faces from two different periods: “Old” faces of people who became famous in the 1960s–1970s and “Recent” faces of people who became famous in the 1990s. We demonstrate that the hippocampus is involved in the successful recognition of famous faces from both periods and does not appear to distinguish between these two periods. We also highlight a network of brain regions, including the left prefrontal cortex, the retrosplenial cortex, the temporo-parietal junction, the caudate and the right cerebellum, which is activated in association with successful recognition of famous faces. Finally, an analysis of the results obtained during a post hoc episodic recognition task shows the specific involvement of anterior hippocampus in the successful encoding of the unfamiliar faces, which were presented during the fame decision task, suggesting a functional distinction between anterior and posterior parts of the hippocampus, the former being specifically involved in successful episodic encoding and the latter being associated with successful retrieval of semantic information.
PRDM9, a driver of the genetic map
During meiosis, maternal and paternal chromosomes undergo exchanges by homologous recombination. This is essential for fertility and contributes to genome evolution. In many eukaryotes, sites of meiotic recombination, also called hotspots, are regions of accessible chromatin, but in many vertebrates, their location follows a distinct pattern and is specified by PR domain-containing protein 9 (PRDM9). The specification of meiotic recombination hotspots is achieved by the different activities of PRDM9: DNA binding, histone methyltransferase, and interaction with other proteins. Remarkably, PRDM9 activity leads to the erosion of its own binding sites and the rapid evolution of its DNA-binding domain. PRDM9 may also contribute to reproductive isolation, as it is involved in hybrid sterility potentially due to a reduction of its activity in specific heterozygous contexts.
Cancer-associated fibroblasts induce epithelial–mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling
Background Cancer-associated fibroblasts (CAFs), activated by tumour cells, are the predominant type of stromal cells in cancer tissue and play an important role in interacting with neoplastic cells to promote cancer progression. Epithelial-mesenchymal transition (EMT) is a key feature of metastatic cells. However, the mechanism by which CAFs induce EMT program in bladder cancer cells remains unclear. Methods To investigate the role of CAFs in bladder cancer progression, healthy primary bladder fibroblasts (HFs) were induced into CAFs (iCAFs) by bladder cancer-derived exosomes. Effect of conditioned medium from iCAFs (CM iCAF ) on EMT markers expression of non-invasive RT4 bladder cancer cell line was determined by qPCR and Western blot. IL6 expression in iCAFs was evaluated by ELISA and Western blot. RT4 cell proliferation, migration and invasion were assessed in CM iCAF +/− anti-IL6 neutralizing antibody using cyQUANT assay, scratch test and transwell chamber respectively. We investigated IL6 expression relevance for bladder cancer progression by querying gene expression datasets of human bladder cancer specimens from TCGA and GEO genomic data platforms. Results Cancer exosome-treated HFs showed CAFs characteristics with high expression levels of αSMA and FAP. We showed that the CM iCAF induces the upregulation of mesenchymal markers, such as N-cadherin and vimentin, while repressing epithelial markers E-cadherin and p-ß-catenin expression in non-invasive RT4 cells. Moreover, EMT transcription factors SNAIL1, TWIST1 and ZEB1 were upregulated in CM iCAF -cultured RT4 cells compared to control. We also showed that the IL-6 cytokine was highly expressed by CAFs, and its receptor IL-6R was found on RT4 bladder cancer cells. The culture of RT4 bladder cancer cells with CM iCAF resulted in markedly promoted cell growth, migration and invasion. Importantly, inhibition of CAFs-secreted IL-6 by neutralizing antibody significantly reversed the IL-6-induced EMT phenotype, suggesting that this cytokine is necessary for CAF-induced EMT in the progression of human bladder cancer. Finally, we observed that IL6 expression is up-regulated in aggressive bladder cancer and correlate with CAF marker ACTA2 . Conclusions We conclude that CAFs promote aggressive phenotypes of non-invasive bladder cancer cells through an EMT induced by the secretion of IL-6.
Meiotic recombination in mammals: localization and regulation
Key Points Meiotic recombination is a major source of genetic diversity in a population. Recent advances in mapping recombination hot spots have shed light on the evolutionary dynamics of recombination hotspot localization and on the factors involved in their specification. The localization of meiotic recombination sites in humans and mice is determined by the DNA-binding specificity of PR domain-containing 9 (PRDM9), which is instrumental in the specification of recombination hot spots. The PRDM9 DNA-binding domain has quickly evolved under positive selection. This evolution may be linked to the erosion of PRDM9-binding sites owing to meiotic DNA double-strand break (DSB) repair.. Meiotic DSBs are catalysed by the meiotic recombination protein SPO11 in humans and mice and are regulated by other proteins, which leads to the regulation of recombination. Several factors required for DSB formation are localized on chromosome axes, and this association with chromosome axes regulates meiotic recombination, from the formation of DSBs to their resolution into final recombination products that are formed from either crossover or non-crossover intermediates. In mammals, the proteins RING finger protein 212 (RNF212) and human enhancer of invasion 10 (HEI10) have a key role in promoting DSB repair towards crossovers from a subset of recombination intermediates. These findings provide new insights into the control of crossover frequency. Genetic exchanges between homologous chromosomes are essential for producing haploid gametes and increase genetic diversity. Recent advances have provided insights into the mechanisms that specify recombination hot spots and the regulation of the exchange of genetic material between mammalian chromosomes. During meiosis, a programmed induction of DNA double-strand breaks (DSBs) leads to the exchange of genetic material between homologous chromosomes. These exchanges increase genome diversity and are essential for proper chromosome segregation at the first meiotic division. Recent findings have highlighted an unexpected molecular control of the distribution of meiotic DSBs in mammals by a rapidly evolving gene, PR domain-containing 9 ( PRDM9 ), and genome-wide analyses have facilitated the characterization of meiotic DSB sites at unprecedented resolution. In addition, the identification of new players in DSB repair processes has allowed the delineation of recombination pathways that have two major outcomes, crossovers and non-crossovers, which have distinct mechanistic roles and consequences for genome evolution.
A machine learning approach for reliable prediction of amino acid interactions and its application in the directed evolution of enantioselective enzymes
Directed evolution is an important research activity in synthetic biology and biotechnology. Numerous reports describe the application of tedious mutation/screening cycles for the improvement of proteins. Recently, knowledge-based approaches have facilitated the prediction of protein properties and the identification of improved mutants. However, epistatic phenomena constitute an obstacle which can impair the predictions in protein engineering. We present an innovative sequence-activity relationship (innov’SAR) methodology based on digital signal processing combining wet-lab experimentation and computational protein design. In our machine learning approach, a predictive model is developed to find the resulting property of the protein when the n single point mutations are permuted (2 n combinations). The originality of our approach is that only sequence information and the fitness of mutants measured in the wet-lab are needed to build models. We illustrate the application of the approach in the case of improving the enantioselectivity of an epoxide hydrolase from Aspergillus niger . n  = 9 single point mutants of the enzyme were experimentally assessed for their enantioselectivity and used as a learning dataset to build a model. Based on combinations of the 9 single point mutations (2 9 ), the enantioselectivity of these 512 variants were predicted, and candidates were experimentally checked: better mutants with higher enantioselectivity were indeed found.
Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation
A total of 304 patients with severe secondary mitral regurgitation were randomly assigned to undergo percutaneous valve repair or to receive medical therapy. At 12 months, the rate of death or hospitalization for heart failure did not differ significantly between the groups.