Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
45
result(s) for
"Bernerd, Françoise"
Sort by:
Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA–induced metabolic stress in reconstructed human skin
by
Stringari, Chiara
,
Mahou, Pierre
,
Ung, Thi Phuong Lien
in
631/443/319
,
639/766/400
,
639/766/400/385
2021
Solar ultraviolet longwave UVA1 exposure of human skin has short-term consequences at cellular and molecular level, leading at long-term to photoaging. Following exposure, reactive oxygen species (ROS) are generated, inducing oxidative stress that might impair cellular metabolic activity. However, the dynamic of UVA1 impact on cellular metabolism remains unknown because of lacking adequate live imaging techniques. Here we assess the UVA1-induced metabolic stress response in reconstructed human skin with multicolor two-photon fluorescence lifetime microscopy (FLIM). Simultaneous imaging of nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD) by wavelength mixing allows quantifying cellular metabolism in function of NAD(P)
+
/NAD(P)H and FAD/FADH
2
redox ratios. After UVA1 exposure, we observe an increase of fraction of bound NAD(P)H and decrease of fraction of bound FAD indicating a metabolic switch from glycolysis to oxidative phosphorylation or oxidative stress possibly correlated to ROS generation. NAD(P)H and FAD biomarkers have unique temporal dynamic and sensitivity to skin cell types and UVA1 dose. While the FAD biomarker is UVA1 dose-dependent in keratinocytes, the NAD(P)H biomarker shows no dose dependence in keratinocytes, but is directly affected after exposure in fibroblasts, thus reflecting different skin cells sensitivities to oxidative stress. Finally, we show that a sunscreen including a UVA1 filter prevents UVA1 metabolic stress response from occurring.
Journal Article
Clinical and Biological Characterization of Skin Pigmentation Diversity and Its Consequences on UV Impact
by
Duval, Christine
,
Del Bino, Sandra
,
Bernerd, Françoise
in
Animals
,
Dermatology
,
Erythema - etiology
2018
Skin color diversity is the most variable and noticeable phenotypic trait in humans resulting from constitutive pigmentation variability. This paper will review the characterization of skin pigmentation diversity with a focus on the most recent data on the genetic basis of skin pigmentation, and the various methodologies for skin color assessment. Then, melanocyte activity and amount, type and distribution of melanins, which are the main drivers for skin pigmentation, are described. Paracrine regulators of melanocyte microenvironment are also discussed. Skin response to sun exposure is also highly dependent on color diversity. Thus, sensitivity to solar wavelengths is examined in terms of acute effects such as sunburn/erythema or induced-pigmentation but also long-term consequences such as skin cancers, photoageing and pigmentary disorders. More pronounced sun-sensitivity in lighter or darker skin types depending on the detrimental effects and involved wavelengths is reviewed.
Journal Article
The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity
by
Castiel, Isabelle
,
Marionnet, Claire
,
Passeron, Thierry
in
Antioxidants
,
Free radicals
,
Light therapy
2022
Within solar ultraviolet (UV) light, the longest UVA1 wavelengths, with significant and relatively constant levels all year round and large penetration properties, produce effects in all cutaneous layers. Their effects, mediated by numerous endogenous chromophores, primarily involve the generation of reactive oxygen species (ROS). The resulting oxidative stress is the major mode of action of UVA1, responsible for lipid peroxidation, protein carbonylation, DNA lesions and subsequent intracellular signaling cascades. These molecular changes lead to mutations, apoptosis, dermis remodeling, inflammatory reactions and abnormal immune responses. The altered biological functions contribute to clinical consequences such as hyperpigmentation, inflammation, photoimmunosuppression, sun allergies, photoaging and photocancers. Such harmful impacts have also been reported after the use of UVA1 phototherapy or tanning beds. Furthermore, other external aggressors, such as pollutants and visible light (Vis), were shown to induce independent, cumulative and synergistic effects with UVA1 rays. In this review, we synthetize the biological and clinical effects of UVA1 and the complementary effects of UVA1 with pollutants or Vis. The identified deleterious biological impact of UVA1 contributing to clinical consequences, combined with the predominance of UVA1 rays in solar UV radiation, constitute a solid rational for the need for a broad photoprotection, including UVA1 up to 400 nm.
Journal Article
Diversity of Biological Effects Induced by Longwave UVA Rays (UVA1) in Reconstructed Skin
by
Pierrard, Cécile
,
Golebiewski, Christelle
,
Marionnet, Claire
in
Aging
,
Apoptosis
,
Apoptosis - radiation effects
2014
Despite their preponderance amongst the ultraviolet (UV) range received on Earth, the biological impacts of longwave UVA1 rays (340-400 nm) upon human skin have not been investigated so thoroughly. Nevertheless, recent studies have proven their harmful effects and involvement in carcinogenesis and immunosuppression. In this work, an in vitro reconstructed human skin model was used for exploring the effects of UVA1 at molecular, cellular and tissue levels. A biological impact of UVA1 throughout the whole reconstructed skin structure could be evidenced, from morphology to gene expression analysis. UVA1 induced immediate injuries such as generation of reactive oxygen species and thymine dimers DNA damage, accumulating preferentially in dermal fibroblasts and basal keratinocytes, followed by significant cellular alterations, such as fibroblast apoptosis and lipid peroxidation. The full genome transcriptomic study showed a clear UVA1 molecular signature with the modulation of expression of 461 and 480 genes in epidermal keratinocytes and dermal fibroblasts, respectively (fold change> = 1.5 and adjusted p value<0.001). Functional enrichment analysis using GO, KEGG pathways and bibliographic analysis revealed a real stress with up-regulation of genes encoding heat shock proteins or involved in oxidative stress response. UVA1 also affected a wide panel of pathways and functions including cancer, proliferation, apoptosis and development, extracellular matrix and metabolism of lipids and glucose. Strikingly, one quarter of modulated genes was related to innate immunity: genes involved in inflammation were strongly up-regulated while genes involved in antiviral defense were severely down-regulated. These transcriptomic data were confirmed in dose-response and time course experiments using quantitative PCR and protein quantification. Links between the evidenced UVA1-induced impacts and clinical consequences of UVA1 exposure such as photo-aging, photo-immunosuppression and cancer are discussed. These early molecular events support the contribution of UVA1 to long term harmful consequences of UV exposure and underline the need of an adequate UVA1 photoprotection.
Journal Article
Exposure to Non-Extreme Solar UV Daylight: Spectral Characterization, Effects on Skin and Photoprotection
2014
The link between chronic sun exposure of human skin and harmful clinical consequences such as photo-aging and skin cancers is now indisputable. These effects are mostly due to ultraviolet (UV) rays (UVA, 320–400 nm and UVB, 280–320 nm). The UVA/UVB ratio can vary with latitude, season, hour, meteorology and ozone layer, leading to different exposure conditions. Zenithal sun exposure (for example on a beach around noon under a clear sky) can rapidly induce visible and well-characterized clinical consequences such as sunburn, predominantly induced by UVB. However, a limited part of the global population is exposed daily to such intense irradiance and until recently little attention has been paid to solar exposure that does not induce any short term clinical impact. This paper will review different studies on non-extreme daily UV exposures with: (1) the characterization and the definition of the standard UV daylight and its simulation in the laboratory; (2) description of the biological and clinical effects of such UV exposure in an in vitro reconstructed human skin model and in human skin in vivo, emphasizing the contribution of UVA rays and (3) analysis of photoprotection approaches dedicated to prevent the harmful impact of such UV exposure.
Journal Article
A chronic pro-inflammatory environment contributes to the physiopathology of actinic lentigines
by
Bastien, Philippe
,
Duval, Christine
,
Warrick, Emilie
in
631/250/256/2515
,
631/80/304
,
Arachidonic acid
2024
Actinic lentigines (AL) or age spots, are skin hyperpigmented lesions associated with age and chronic sun exposure. To better understand the physiopathology of AL, we have characterized the inflammation response in AL of European and Japanese volunteers. Gene expression profile showed that in both populations, 10% of the modulated genes in AL versus adjacent non lesional skin (NL), i.e. 31 genes, are associated with inflammation/immune process. A pro-inflammatory environment in AL is strongly suggested by the activation of the arachidonic acid cascade and the plasmin pathway leading to prostaglandin production, along with the decrease of anti-inflammatory cytokines and the identification of inflammatory upstream regulators. Furthermore, in line with the over-expression of genes associated with the recruitment and activation of immune cells, immunostaining on skin sections revealed a significant infiltration of CD68+ macrophages and CD4
+
T-cells in the dermis of AL. Strikingly, investigation of infiltrated macrophage subsets evidenced a significant increase of pro-inflammatory CD80+/CD68+ M1 macrophages in AL compared to NL. In conclusion, a chronic inflammation, sustained by pro-inflammatory mediators and infiltration of immune cells, particularly pro-inflammatory M1 macrophages, takes place in AL. This pro-inflammatory loop should be thus broken to normalize skin and improve the efficacy of age spot treatment.
Journal Article
Key regulatory role of dermal fibroblasts in pigmentation as demonstrated using a reconstructed skin model: impact of photo-aging
2014
To study cutaneous pigmentation in a physiological context, we have previously developed a functional pigmented reconstructed skin model composed of a melanocyte-containing epidermis grown on a dermal equivalent comprising living fibroblasts. The present studies, using the same model, aimed to demonstrate that dermal fibroblasts influence skin pigmentation up to the macroscopic level. The proof of principle was performed with pigmented skins differing only in the fibroblast component. First, the in vitro system was reconstructed with or without fibroblasts in order to test the global influence of the presence of this cell type. We then assessed the impact of the origin of the fibroblast strain on the degree of pigmentation using fetal versus adult fibroblasts. In both experiments, impressive variation in skin pigmentation at the macroscopic level was observed and confirmed by quantitative parameters related to skin color, melanin content and melanocyte numbers. These data confirmed the responsiveness of the model and demonstrated that dermal fibroblasts do indeed impact the degree of skin pigmentation. We then hypothesized that a physiological state associated with pigmentary alterations such as photo-aging could be linked to dermal fibroblasts modifications that accumulate over time. Pigmentation of skin reconstructed using young unexposed fibroblasts (n = 3) was compared to that of tissues containing natural photo-aged fibroblasts (n = 3) which express a senescent phenotype. A stimulation of pigmentation in the presence of the natural photo-aged fibroblasts was revealed by a significant increase in the skin color (decrease in Luminance) and an increase in both epidermal melanin content and melanogenic gene expression, thus confirming our hypothesis. Altogether, these data demonstrate that the level of pigmentation of the skin model is influenced by dermal fibroblasts and that natural photo-aged fibroblasts can contribute to the hyperpigmentation that is associated with photo-aging.
Journal Article
Identification and functional validation of SRC and RAPGEF1 as new direct targets of miR-203, involved in regulation of epidermal homeostasis
2023
The epidermis is mostly composed of keratinocytes and forms a protecting barrier against external aggressions and dehydration. Epidermal homeostasis is maintained by a fine-tuned balance between keratinocyte proliferation and differentiation. In the regulation of this process, the keratinocyte-specific miR-203 microRNA is of the outmost importance as it promotes differentiation, notably by directly targeting and down-regulating mRNA expression of genes involved in keratinocyte proliferation, such as ΔNp63, Skp2 and Msi2. We aimed at identifying new miR-203 targets involved in the regulation of keratinocyte proliferation/differentiation balance. To this end, a transcriptome analysis of human primary keratinocytes overexpressing miR-203 was performed and revealed that miR-203 overexpression inhibited functions like proliferation, mitosis and cell cycling, and activated differentiation, apoptosis and cell death. Among the down-regulated genes, 24 putative target mRNAs were identified and 8 of them were related to proliferation. We demonstrated that SRC and RAPGEF1 were direct targets of miR-203. Moreover, both were down-regulated during epidermal morphogenesis in a 3D reconstructed skin model, while miR-203 was up-regulated. Finally silencing experiments showed that SRC or RAPGEF1 contributed to keratinocyte proliferation and regulated their differentiation. Preliminary results suggest their involvement in skin carcinoma hyperproliferation. Altogether this data indicates that RAPGEF1 and SRC could be new mediators of miR-203 in epidermal homeostasis regulation.
Journal Article
Topical prevention from high energy visible light-induced pigmentation by 2-mercaptonicotinoyl glycine, but not by ascorbic acid antioxidant: 2 randomized controlled trials
by
Belaidi, Jean-Philippe
,
Piffaut, Virginie
,
Marionnet, Claire
in
Acids
,
Antioxidants
,
Ascorbic acid
2025
Hyperpigmentation and pigmentary disorders are major clinical consequences of sun exposure. While UV radiation is a known contributor, visible light (VL), particularly High Energy Visible (HEV) light (400-450 nm), also induces long-lasting pigmentation in melanocompetent individuals (Fitzpatrick Phototype III and above), and can worsen pigmentary disorders. Therefore, photoprotection in this wavelengths range is recommended to prevent worsening of hyperpigmentation issues. Efficient solutions rely on the use of pigments, absorbing and diffusing VL. However, tint and opacity of these products may limit their use by consumers and patients. The search for actives preventing VL-induced pigmentation is therefore of interest. This work aimed at assessing 2 non tinted biological actives to counteract HEV-induced pigmentation.
Two very potent inhibitors of UV-induced pigmentation, ascorbic acid 7% (powerful antioxidant) and 2-mercaptonicotinoyl glycine (2-MNG, 0.5 or 1%, melanogenesis inhibitor), were assessed in 2 controlled randomized clinical trials (registered under the identification numbers NCT06945393 and NCT06937515 on ClinicalTrials.gov), including in total, 58 individuals with Fitzpatrick Phototype III or IV. Delineated areas on the subjects back, topically treated or not by the product, were exposed to HEV once a day for 4 days. The product was applied before, during and 5 weeks after HEV exposure. Pigmentation was assessed using chromametry and visual scoring throughout the studies.
While ascorbic acid did not exhibit any efficacy versus its vehicle in limiting skin hyperpigmentation induced by HEV, the use of 2-MNG (0.5 or 1%) led to an early significant decrease in HEV-induced pigmentation, which was sustained until the end of the study, as evidenced by colorimetry and significantly scored by visual assessment. Moreover, a 2-MNG dose effect could be evidenced at early time points.
2-MNG represents an efficient and transparent alternative solution to pigments for the mitigation of HEV worsening of hyperpigmentation issues. This opens up perspectives for its use as a complement to UV protection afforded by sun filters.
Journal Article
Development of pathological skin models: from conventional techniques to 3D bioprinting
2025
Reconstructed human skin models were first developed in the 1970s. Since then, they have played a pivotal role in dermatological research, significantly advanced our understanding of skin biology, and brought huge insights into dermatological pathologies. Many conventional pathological skin models exist covering a wide range of diseases including melanomas, psoriasis, atopic dermatitis, genetic disorders, and wound healing conditions. However, conventional skin models remain limited by technical constraints which prevent complete replication of the spatial organization (heterogeneities, microenvironment) of skin diseases. Bioprinting has emerged as a powerful technology with the potential to overcome some of these limitations. By enabling precise control over the spatial organization of multiple cell types within a tailored extracellular matrix, bioprinting facilitates the creation of complex, three-dimensional skin models that closely mimic the architecture and function of human skin. This review initially explores the current landscape of conventional reconstructed pathological skin models. Bioprinting techniques, bioink considerations, and their roles in creating complex skin models are discussed. It then highlights the benefits of bioprinting for tissue microenvironment replication, architectural fidelity, and integration of multiple cell types in pathological skin models. In terms of healthy skin models, three-dimensional bioprinting is already revolutionizing personalized medicine, automating model production, and supporting translational research and therapeutic and cosmetic screening. It also represents a transformative approach for developing advanced pathological skin models despite the remaining technical and regulatory challenges.
Journal Article