Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Bernhammer, Anne-Kathrin"
Sort by:
Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls
Sources and sinks of isoprene oxidation products from low-NOx isoprene chemistry have been studied at the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber with a custom-built selective reagent ion time-of-flight mass spectrometer (SRI-ToF-MS), which allows quantitative measurement of isoprene hydroxy hydroperoxides (ISOPOOHs). The measured concentrations of the main oxidation products were compared to chemical box model simulations based on the Leeds Master Chemical Mechanism (MCM) v3.3. The modeled ISOPOOH concentrations are a factor of 20 higher than the observed concentrations, and methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations are up to a factor of 2 lower compared to observations, despite the artifact-free detection method. Addition of catalytic conversion of 1,2-ISOPOOH and 4,3-ISOPOOH to methyl vinyl ketone (MVK) and methacrolein (MACR) on the stainless-steel surface of the chamber to the chemical mechanism resolves the discrepancy between model predictions and observation. This suggests that isoprene chemistry in a metal chamber under low-NOx conditions cannot be described by a pure gas phase model alone. Biases in the measurement of ISOPOOH, MVK, and MACR can be caused not only intra-instrumentally but also by the general experimental setup. The work described here extends the role of heterogeneous reactions affecting gas phase composition and properties from instrumental surfaces, described previously, to general experimental setups. The role of such conversion reactions on real environmental surfaces is yet to be explored.
Production of highly oxygenated organic molecules (HOMs) from trace contaminants during isoprene oxidation
During nucleation studies from pure isoprene oxidation in the CLOUD chamber at the European Organization for Nuclear Research (CERN) we observed unexpected ion signals at m∕z = 137.133 (C10H17+) and m∕z = 81.070 (C6H9+) with the recently developed proton-transfer-reaction time-of-flight (PTR3-TOF) mass spectrometer instrument. The mass-to-charge ratios of these ion signals typically correspond to protonated monoterpenes and their main fragment. We identified two origins of these signals: first secondary association reactions of protonated isoprene with isoprene within the PTR3-TOF reaction chamber and secondly [4+2] cycloaddition (Diels–Alder) of isoprene inside the gas bottle which presumably forms the favored monoterpenes limonene and sylvestrene, as known from literature. Under our PTR3-TOF conditions used in 2016 an amount (relative to isoprene) of 2 % is formed within the PTR3-TOF reaction chamber and 1 % is already present in the gas bottle. The presence of unwanted cycloaddition products in the CLOUD chamber impacts the nucleation studies by creating ozonolysis products as the corresponding monoterpenes and is responsible for the majority of the observed highly oxygenated organic molecules (HOMs), which in turn leads to a significant overestimation of both the nucleation rate and the growth rate. In order to study new particle formation (NPF) from pure isoprene oxidation under relevant atmospheric conditions, it is important to improve and assure the quality and purity of the precursor isoprene. This was successfully achieved by cryogenically trapping lower-volatility compounds such as monoterpenes before isoprene was introduced into the CLOUD chamber.
The role of low-volatility organic compounds in initial particle growth in the atmosphere
The growth of nucleated organic particles has been investigated in controlled laboratory experiments under atmospheric conditions; initial growth is driven by organic vapours of extremely low volatility, and accelerated by more abundant vapours of slightly higher volatility, leading to markedly different modelled concentrations of atmospheric cloud condensation nuclei when this growth mechanism is taken into account. Aerosol particle formation in clean air The effect of atmospheric aerosols on clouds and the radiative forcing of the climate system remains poorly understood. It is thought that nucleation of aerosol particles from atmospheric vapours rarely proceeds in the absence of sulfuric acid. Now two papers in this week’s Nature point to a previously unappreciated role for highly oxygenated molecules (HOMs) in promoting new particle formation and growth, essentially a mechanism that produces aerosols in the absence of pollution. Jasper Kirkby et al . show that aerosol particles can form as a result of ion-induced nucleation of HOMs in the absence of sulfuric acid under conditions relevant to the atmosphere in the CLOUD chamber at CERN. Jasmin Tröstl et al . examined the role of organic vapours in the initial growth of nucleated organic particles in the absence of sulfuric acid in the CERN CLOUD chamber under atmospheric conditions. They find that the organic vapours driving initial growth have extremely low volatilities. With increasing particle size, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility. About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday 1 . Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres 2 , 3 . In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles 4 , thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth 5 , 6 , leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer 7 , 8 , 9 , 10 . Although recent studies 11 , 12 , 13 predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon 2 , and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory) 2 , 14 , has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown 15 that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10 −4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10 −4.5 to 10 −0.5 micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.
Ion-induced nucleation of pure biogenic particles
Aerosol particles can form in the atmosphere by nucleation of highly oxidized biogenic vapours in the absence of sulfuric acid, with ions from Galactic cosmic rays increasing the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Aerosol particles can form in the atmosphere by nucleation of highly oxidized biogenic vapours in the absence of sulfuric acid, with ions from Galactic cosmic rays increasing the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Aerosol particle formation in clean air The effect of atmospheric aerosols on clouds and the radiative forcing of the climate system remains poorly understood. It is thought that nucleation of aerosol particles from atmospheric vapours rarely proceeds in the absence of sulfuric acid. Now two papers in this week’s Nature point to a previously unappreciated role for highly oxygenated molecules (HOMs) in promoting new particle formation and growth, essentially a mechanism that produces aerosols in the absence of pollution. Jasper Kirkby et al . show that aerosol particles can form as a result of ion-induced nucleation of HOMs in the absence of sulfuric acid under conditions relevant to the atmosphere in the CLOUD chamber at CERN. Jasmin Tröstl et al . examined the role of organic vapours in the initial growth of nucleated organic particles in the absence of sulfuric acid in the CERN CLOUD chamber under atmospheric conditions. They find that the organic vapours driving initial growth have extremely low volatilities. With increasing particle size, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility. Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood 1 . Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours 2 . It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere 3 , 4 , and that ions have a relatively minor role 5 . Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded 6 , 7 . Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.