Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
173 result(s) for "Bernhardt, Emily S."
Sort by:
Synthetic chemicals as agents of global change
Though concerns about the proliferation of synthetic chemicals – including pesticides – gave rise to the modem environmental movement in the early 1960s, synthetic chemical pollution has not been included in most analyses of global change. We examined the rate of change in the production and variety of pesticides, pharmaceuticals, and other synthetic chemicals over the past four decades. We compared these rates to those for well-recognized drivers of global change such as rising atmospheric CO₂ concentrations, nutrient pollution, habitat destruction, and biodiversity loss. Our analysis showed that increases in synthetic chemical production and diversification, particularly within the developing world, outpaced these other agents of global change. Despite these trends, mainstream ecological journals, ecological meetings, and ecological funding through the US National Science Foundation devote less than 2% of their journal pages, meeting talks, and science funding, respectively, to the study of synthetic chemicals.
Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants
The increasing commercial production of engineered nanoparticles (ENPs) has led to concerns over the potential adverse impacts of these ENPs on biota in natural environments. Silver nanoparticles (AgNPs) are one of the most widely used ENPs and are expected to enter natural ecosystems. Here we examined the effects of AgNPs on germination and growth of eleven species of common wetland plants. We examined plant responses to AgNP exposure in simple pure culture experiments (direct exposure) and for seeds planted in homogenized field soils in a greenhouse experiment (soil exposure). We compared the effects of two AgNPs-20-nm polyvinylpyrrolidine-coated silver nanoparticles (PVP-AgNPs) and 6-nm gum arabic coated silver nanoparticles (GA-AgNPs)-to the effects of AgNO(3) exposure added at equivalent Ag concentrations (1, 10 or 40 mg Ag L(-1)). In the direct exposure experiments, PVP-AgNP had no effect on germination while 40 mg Ag L(-1) GA-AgNP exposure significantly reduced the germination rate of three species and enhanced the germination rate of one species. In contrast, 40 mg Ag L(-1) AgNO(3) enhanced the germination rate of five species. In general root growth was much more affected by Ag exposure than was leaf growth. The magnitude of inhibition was always greater for GA-AgNPs than for AgNO(3) and PVP-AgNPs. In the soil exposure experiment, germination effects were less pronounced. The plant growth response differed by taxa with Lolium multiflorum growing more rapidly under both AgNO(3) and GA-AgNP exposures and all other taxa having significantly reduced growth under GA-AgNP exposure. AgNO(3) did not reduce the growth of any species while PVP-AgNPs significantly inhibited the growth of only one species. Our findings suggest important new avenues of research for understanding the fate and transport of NPs in natural media, the interactions between NPs and plants, and indirect and direct effects of NPs in mixed plant communities.
River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation
River restoration is an increasingly common approach utilized to reverse past degradation of freshwater ecosystems and to mitigate the anticipated damage to freshwaters from future development and resource-extraction activities. While the practice of river restoration has grown exponentially over the last several decades, there has been little empirical evaluation of whether restoration projects individually or cumulatively achieve the legally mandated goals of improving the structure and function of streams and rivers. New efforts to evaluate river restoration projects that use channel reconfiguration as a methodology for improving stream ecosystem structure and function are finding little evidence for measurable ecological improvement. While designed channels may have less-incised banks and greater sinuousity than the degraded streams they replace, these reach-scale efforts do not appear to be effectively mitigating the physical, hydrological, or chemical alterations that are responsible for the loss of sensitive taxa and the declines in water quality that typically motivate restoration efforts. Here we briefly summarize this new literature, including the collection of papers within this Invited Feature, and provide our perspective on the limitations of current restoration.
Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining
Mercury emissions from artisanal and small-scale gold mining throughout the Global South exceed coal combustion as the largest global source of mercury. We examined mercury deposition and storage in an area of the Peruvian Amazon heavily impacted by artisanal gold mining. Intact forests in the Peruvian Amazon near gold mining receive extremely high inputs of mercury and experience elevated total mercury and methylmercury in the atmosphere, canopy foliage, and soils. Here we show for the first time that an intact forest canopy near artisanal gold mining intercepts large amounts of particulate and gaseous mercury, at a rate proportional with total leaf area. We document substantial mercury accumulation in soils, biomass, and resident songbirds in some of the Amazon’s most protected and biodiverse areas, raising important questions about how mercury pollution may constrain modern and future conservation efforts in these tropical ecosystems. The Peruvian Amazon is facing the highest known input of mercury pollution of any ecosystem globally. Intact forests located near artisanal gold mining are particularly at risk from this toxin.
Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario
A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate to ecosystems, where exposures will likely be at low-concentrations and which are inhabited by a diversity of organisms. Here we show adverse responses of plants and microorganisms in a replicated long-term terrestrial mesocosm field experiment following a single low dose of silver nanoparticles (0.14 mg Ag kg(-1) soil) applied via a likely route of exposure, sewage biosolid application. While total aboveground plant biomass did not differ between treatments receiving biosolids, one plant species, Microstegium vimeneum, had 32 % less biomass in the Slurry+AgNP treatment relative to the Slurry only treatment. Microorganisms were also affected by AgNP treatment, which gave a significantly different community composition of bacteria in the Slurry+AgNPs as opposed to the Slurry treatment one day after addition as analyzed by T-RFLP analysis of 16S-rRNA genes. After eight days, N2O flux was 4.5 fold higher in the Slurry+AgNPs treatment than the Slurry treatment. After fifty days, community composition and N2O flux of the Slurry+AgNPs treatment converged with the Slurry. However, the soil microbial extracellular enzymes leucine amino peptidase and phosphatase had 52 and 27% lower activities, respectively, while microbial biomass was 35% lower than the Slurry. We also show that the magnitude of these responses was in all cases as large as or larger than the positive control, AgNO3, added at 4-fold the Ag concentration of the silver nanoparticles.
The ecology and economics of restoration: when, what, where, and how to restore ecosystems
Restoration ecology has provided a suite of tools for accelerating the recovery of ecosystems damaged by drivers of global change. We review both the ecological and economic concepts developed in restoration ecology, and offer guidance on when, what, where, and how to restore ecosystems. For when to restore, we highlight the value of pursuing restoration early to prevent ecosystems from crossing tipping points and evaluating whether unassisted natural recovery is more cost-effective than active restoration. For what to restore, we encourage developing a restoration plan with stakeholders that will restore structural, compositional, and functional endpoints, and whose goal is a more resistant and resilient ecosystem. For where to restore, we emphasize developing restoration approaches that can address the impediment of rural poverty in the developing world and identifying and then balancing the ecosystems and regions in most need of restoration and those that are best positioned for restoration success. For the economics of how to restore ecosystems, we review the advantages and disadvantages of market-based strategies, such as environmental insurance bonds and Payment for Ecosystem Services frameworks, for funding, incentivizing, and ensuring restoration. For the ecology of how to restore ecosystems, we discuss the value of taking into account various ecological theories, site history, and landscape and aquascape perspectives, and employing a more inclusive toolbox that holistically considers alterations to propagule pressure, abiotic conditions, and biotic interactions. Finally, we draw attention to the importance of monitoring; adaptive management; stakeholder involvement; collaborations among scientists, managers, and practitioners; formal evaluation throughout the restoration process; and integrating ecological and economic concepts to maximize restoration success. We hope this overview of key ecological and economic concepts in restoration science sheds light on the discipline and facilitates restoring and maintaining the services and products provided by natural capital, thus improving human livelihoods and hope for posterity.
Restored forested wetland surprisingly resistant to experimental salinization
Salinization of coastal freshwater wetlands is an increasingly common and widespread phenomenon resulting from climate change. The ecosystem consequences of added salinity are poorly constrained and highly variable across prior observational and experimental studies. We added 1.8 metric tons of marine salts to replicated 200 m 2 plots within a restored forested wetland in Eastern North Carolina over the course of four years. Based on prior small-scale experiments at this site, we predicted that salinization would lead to slower tree growth and suppressed soil carbon cycling. Results from this large-scale field experiment were subtle and inconsistent over space and time. By the fourth year of the experiment, we observed the predicted suppression of soil respiration and a reduction of water extractable carbon from soils receiving salt treatments. However, we found no cumulative effects of four years of salinization on total soil carbon stocks, tree growth, or root biomass. We observed substantial variation in soil solution chemistry (notably, pH and base saturation) across replicated treatment blocks; the effective salt levels, ionic composition, and pH varied following treatment depending upon pre-existing differences in edaphic factors. Our multi-year monitoring also revealed an underlying trend of wetland acidification across the entire site, a suspected effect of ecosystem recovery following wetland restoration on former agricultural land. The overwhelming resistance to our salt treatments could be attributed to the vigor of a relatively young, healthy wetland ecosystem. The heterogeneous responses to salt that we observed over space and time merits further investigation into the environmental factors that control carbon cycling in wetlands. This work highlights the importance of multi-year, large-scale field experiments for investigating ecosystem responses to global environmental change.
Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine
Surface mining for coal has taken place in the Central Appalachian region of the United States for well over a century, with a notable increase since the 1970s. Researchers have quantified the ecosystem and health impacts stemming from mining, relying in part on a geospatial dataset defining surface mining's extent at a decadal interval. This dataset, however, does not deliver the temporal resolution necessary to support research that could establish causal links between mining activity and environmental or public health and safety outcomes, nor has it been updated since 2005. Here we use Google Earth Engine and Landsat imagery to map the yearly extent of surface coal mining in Central Appalachia from 1985 through 2015, making our processing models and output data publicly available. We find that 2,900 km2 of land has been newly mined over this 31-year period. Adding this more-recent mining to surface mines constructed prior to 1985, we calculate a cumulative mining footprint of 5,900 km2. Over the study period, correlating active mine area with historical surface mine coal production shows that each metric ton of coal is associated with 12 m2 of actively mined land. Our automated, open-source model can be regularly updated as new surface mining occurs in the region and can be refined to capture mining reclamation activity into the future. We freely and openly offer the data for use in a range of environmental, health, and economic studies; moreover, we demonstrate the capability of using tools like Earth Engine to analyze years of remotely sensed imagery over spatially large areas to quantify land use change.
Rare microbial taxa emerge when communities collide: freshwater and marine microbiome responses to experimental mixing
Whole microbial communities regularly merge with one another, often in tandem with their environments, in a process called community coalescence. Such events impose substantial changes: abiotic perturbation from environmental blending and biotic perturbation of community merging. We used an aquatic mixing experiment to unravel the effects of these perturbations on the whole microbiome response and on the success of individual taxa when distinct freshwater and marine communities coalesce. We found that an equal mix of freshwater and marine habitats and blended microbiomes resulted in strong convergence of the community structure toward that of the marine microbiome. The enzymatic potential of these blended microbiomes in mixed media also converged toward that of the marine, with strong correlations between the multivariate response patterns of the enzymes and of community structure. Exposing each endmember inocula to an axenic equal mix of their freshwater and marine source waters led to a 96% loss of taxa from our freshwater microbiomes and a 66% loss from our marine microbiomes. When both inocula were added together to this mixed environment, interactions amongst the communities led to a further loss of 29% and 49% of freshwater and marine taxa, respectively. Under both the axenic and competitive scenarios, the diversity lost was somewhat counterbalanced by increased abundance of microbial taxa that were too rare to detect in the initial inocula. Our study emphasizes the importance of the rare biosphere as a critical component of microbial community responses to community coalescence.
Linking microbial community structure and microbial processes: an empirical and conceptual overview
A major goal of microbial ecology is to identify links between microbial community structure and microbial processes. Although this objective seems straightforward, there are conceptual and methodological challenges to designing studies that explicitly evaluate this link. Here, we analyzed literature documenting structure and process responses to manipulations to determine the frequency of structure-process links and whether experimental approaches and techniques influence link detection. We examined nine journals (published 2009–13) and retained 148 experimental studies measuring microbial community structure and processes. Many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant and typically used Spearman or Pearson's correlation analysis (68%). No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure or both structure and process. Together, our findings suggest that few publications report statistically testing structure-process links. However, when links are tested for they often occur but share few commonalities in the processes or structures that were linked and the techniques used for measuring them. Few publications reported statistically testing microbial community structure-process links; 75% of tested links were significant, though had few commonalities in which processes or structures were measured and the techniques used.