Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
60 result(s) for "Bernhardt-Römermann, Markus"
Sort by:
BryForTrait – A life-history trait database of forest bryophytes
In ecological research, plant functional trait analyses are widely applied to understand to what extent the inter-specific variation in trait attributes has an adaptive value or to predict ecosystem processes and changes. Compared to vascular plants, trait studies using bryophytes are scarce, which is likely due to missing trait information for bryophyte species. With the BryForTrait database, we want to reduce this deficit. Our database represents a compilation of autecological information and morphological and regenerative trait data on different stages of the life cycle of bryophytes occurring in forest ecosystems. The database contains information for 35 traits and 721 Central European bryophyte species; in total more than 23,000 trait values. The BryForTrait database will enable future trait studies, providing new insights into bryophyte-dominated ecosystems.
Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests
Following natural disturbances, additional anthropogenic disturbance may alter community recovery by affecting the occurrences of species, functional groups, and evolutionary lineages. However, our understanding of whether rare, common, or dominant species, functional groups, or evolutionary lineages are most strongly affected by an additional disturbance, particularly across multiple taxa, is limited. Here, we used a generalized diversity concept based on Hill numbers to quantify the community differences of vascular plants, bryophytes, lichens, wood-inhabiting fungi, saproxylic beetles, and birds in a storm-disturbed, experimentally salvage logged forest. Communities of all investigated species groups showed dissimilarities between logged and unlogged plots. Most species groups showed no significant changes in dissimilarities between logged and unlogged plots over the first seven years of succession, indicating a lack of community recovery. In general, the dissimilarities of communities were mainly driven by rare species. Convergence of dissimilarities occurred more often than divergence during the early stages of succession for rare species, indicating a major role in driving decreasing taxonomic dissimilarities between logged and unlogged plots over time. Trends in species dissimilarities only partially match the trends in dissimilarities of functional groups and evolutionary lineages, with little significant changes in successional trajectories. Nevertheless, common and dominant species contributed to a convergence of dissimilarities over time in the case of the functional dissimilarities of wood-inhabiting fungi. Our study shows that salvage logging following disturbances can alter successional trajectories in early stages of forest succession following natural disturbances. However, community changes over time may differ remarkably in different taxonomic groups and are best detected based on taxonomic, rather than functional or phylogenetic dissimilarities.
Geese are overlooked dispersal vectors for vascular plants in archipelago environments
Question We addressed the importance of gut‐mediated dispersal by greylag geese for vascular plants in archipelago environments and asked: (a) What proportion of the local species pool is dispersed by geese? (b) Which plant traits characterize species dispersed by geese? (c) Which plant communities are likely to benefit from endozoochory by geese? Location Three Swedish Baltic archipelagos. Methods Goose droppings were collected on 45 islands. Plants germinating from the droppings represent the endozoochorous species pool (ESP). On 108 islands, the presence of vascular plants was recorded in each habitat. These species represent the island species pool (ISP). Differences in functional traits between ESP and ISP were expressed as effect sizes and tested using meta‐regressions. Using indicator species analyses and indicator species for managed semi‐natural grasslands, we identified the primary habitats of the ESP. Results Geese dispersed viable diaspores of 97 plant species, which represents 22% of the ISP. Most ESP species were typical for small islands. Geese dispersed a higher proportion of graminoids and less woody plants, higher proportions of chamaephytes and therophytes and less phanerophytes; annuals and bi‐annuals were significantly overrepresented. On average, seed volume of the ESP was 95% smaller than that of the ISP. About 51% of all ESP species were dispersed in at least two archipelagos. Geese showed a bias towards species of rocky shore habitats. Conclusion Geese potentially disperse large amounts of diaspores of many terrestrial island plant species. Through their feeding behaviour, geese select species with certain suites of traits from the regional species pool. Plant dispersal by geese may benefit plants species of rocky shores, but species of formerly managed semi‐natural grasslands may also find refuge sites on epilittoral shores after goose‐mediated dispersal. The relative importance of geese as dispersal vectors may increase under on‐going land‐use changes and cessation of grazing networks. We show that geese may disperse in their gut at least 20% of the regional flora in northern archipelagos. Through their feeding behaviour, geese select seeds of plants with a specific suite of traits from the regional species pool. The importance of geese as a dispersal vectors may increase in these archipelago landscapes since grazing by livestock is declining.
Using incomplete floristic monitoring data from habitat mapping programmes to detect species trends
Aim The loss of biodiversity has raised serious concerns about the entailing losses of ecosystem services. Here, we explore the potential of repeated habitat mapping data to identify floristic changes over time. Using one German federal state as a case study, we assessed floristic changes between the 1980s and 2010s. These habitat data have great potential for analysis because of their high spatial coverage while also posing methodological challenges such as incomplete observation data. We developed a modelling approach that accounts for incomplete observations and explored the ability to detect temporal trends. Location The Federal State of Schleswig‐Holstein (Germany) Methods We compiled plant species lists from the earliest (1980s) and most recent (2010s) habitat mapping survey and aligned differing habitat definitions across mapping campaigns. A total of 5,503 mapped polygons, each with a list of species records, intersected the two surveys. We accounted for underrecorded species by assigning occurrence probabilities, based on species co‐occurrence information across all surveys, using Beals' index and tested the robustness of this approach by simulation experiments. For those species with significant increases and decreases in occurrence probability, we linked these trends to the species' functional characteristics. Results We found a systematic loss of species that are moderately threatened. Species that indicate low nitrogen supply and high soil moisture declined, suggesting a shift towards a more eutrophic and drier landscape. Importantly, assessing specific plant traits associated with losses, we also detected a decrease in species with reddish and blueish flowers and species providing nectar, pointing to a decrease of insect‐pollinated taxa. Main conclusions The identified changes raise concerns that plant biodiversity has fundamentally changed over the last three decades, with concomitant consequences for ecosystem services, especially pollination. Given the general lack of historical standardized data, our approach for trend analyses using incomplete observation data may be widely applicable to assess long‐term biodiversity change.
Vegetation changes over the past two decades in a West African savanna ecosystem
Questions West African savanna ecosystems are affected by increasing land use intensity (e.g., agriculture and livestock herds) due to a growing human population. To understand the impact of land use intensification on savanna vegetation, we aim to answer the following questions: How do savanna species composition, diversity and structure change with increasing land use pressure? Are the impacts of land use change different in the woody and the herbaceous layers? Do the effects of land use change differ between vegetation types? Location Southeastern Burkina Faso, West Africa. Methods Vegetation plots from the early 1990s representing vegetation types occurring in fallows of different age and in uncultivated pasturing zones were resurveyed. We distinguished between woody (tree and shrub layer) and herbaceous vegetation types. Species composition changes were analyzed using ordination techniques (detrended correspondence analysis, DCA) and indicator species analysis (IndVal). Species turnover and plant diversity as represented by species richness and evenness were compared between the baseline survey and the resurvey. Results In most woody vegetation types, we found no change in species composition and richness over the past two decades. However, some highly valued woody species decreased in abundance. In contrast, in most herbaceous vegetation types, species composition changed considerably and species richness increased. The proportion of wide‐ranging, ruderal herbaceous species increased, indicating a homogenization of herbaceous vegetation types, while preferred fodder herbaceous species decreased. We assume that the increased grazing intensity over the past two decades is the driver of these changes in the herbaceous layer. Conclusions Our results show different reactions of vegetation types and layers to land use intensification and reinforce the need for studies on the basis of vegetation type that incorporate both the herbaceous and the woody layers. In West‐African savannas, vegetation development is controversially discussed. Therefore, in a vegetation resurvey in southeastern Burkina Faso, we show the impact of land use intensification on savanna vegetation. We found that on fallows especially highly valued species decreased in abundance but that vegetation responses differed considerably according to vegetation layer and vegetation type.
Divergent roles of herbivory in eutrophying forests
Ungulate populations are increasing across Europe with important implications for forest plant communities. Concurrently, atmospheric nitrogen (N) deposition continues to eutrophicate forests, threatening many rare, often more nutrient-efficient, plant species. These pressures may critically interact to shape biodiversity as in grassland and tundra systems, yet any potential interactions in forests remain poorly understood. Here, we combined vegetation resurveys from 52 sites across 13 European countries to test how changes in ungulate herbivory and eutrophication drive long-term changes in forest understorey communities. Increases in herbivory were associated with elevated temporal species turnover, however, identities of winner and loser species depended on N levels. Under low levels of N-deposition, herbivory favored threatened and small-ranged species while reducing the proportion of non-native and nutrient-demanding species. Yet all these trends were reversed under high levels of N-deposition. Herbivores also reduced shrub cover, likely exacerbating N effects by increasing light levels in the understorey. Eutrophication levels may therefore determine whether herbivory acts as a catalyst for the “N time bomb” or as a conservation tool in temperate forests. Ungulate herbivory is an important driver of ecological change in forests. Here, the authors combine vegetation resurveys showing herbivory effects are highly dependent on soil eutrophication, promoting non-natives under high N-conditions, yet benefiting threatened species under low N-conditions.
New insights into island vegetation composition and species diversity—Consistent and conditional responses across contrasting insular habitats at the plot-scale
Most island-ecology studies focus on the properties of entire island communities, thus neglecting species-environment relationships operating at the habitat-level. Habitat-specific variation in the strength and sign of these relationships will conceal patterns observed on the island scale and may preclude a mechanistic interpretation of patterns and processes. Habitat-specific species-environment relationships may also depend on the descriptor of ecological communities. This paper presents a comprehensive plot-based analysis of local vegetation composition and species diversity (species richness and species evenness) of (i) rocky shore, (ii) semi-natural grassland and (iii) coniferous forest habitats in three Baltic archipelagos in Sweden. To identify differences and consistencies between habitats and descriptors, we assessed the relative contributions of the variable-sets \"region\", \"topography\", \"soil morphology\", \"soil fertility\", \"soil water\", \"light availability\", \"distance\" and \"island configuration\" on local vegetation composition, species richness and species evenness. We quantified the impact of \"management history\" on the descriptors of local grassland communities by a newly introduced grazing history index (GHI). Unlike species diversity, changes in vegetation composition were related to most of the variable-sets. The relative contributions of the variable-sets were mostly habitat-specific and strongly contingent on the descriptor involved. Within each habitat, richness and evenness were only partly affected by the same variable-sets, and if so, their relative contribution varied between diversity proxies. Across all habitats, soil variable-sets showed highly consistent effects on vegetation composition and species diversity and contributed most to the variance explained. GHI was a powerful predictor, explaining high proportions of variation in all three descriptors of grassland species communities. The proportion of unexplained variance was habitat-specific, possibly reflecting a community maturity gradient. Our results reveal that species richness alone is an incomplete representation of local species diversity. Finally, we stress the need of including habitat-based approaches when analyzing complex species-environment relationships on islands.
Combining Biodiversity Resurveys across Regions to Advance Global Change Research
More and more ecologists have started to resurvey communities sampled in earlier decades to determine long-term shifts in community composition and infer the likely drivers of the ecological changes observed. However, to assess the relative importance of and interactions among multiple drivers, joint analyses of resurvey data from many regions spanning large environmental gradients are needed. In this article, we illustrate how combining resurvey data from multiple regions can increase the likelihood of driver orthogonality within the design and show that repeatedly surveying across multiple regions provides higher representativeness and comprehensiveness, allowing us to answer more completely a broader range of questions. We provide general guidelines to aid the implementation of multiregion resurvey databases. In so doing, we aim to encourage resurvey database development across other community types and biomes to advance global environmental change research.
Substitutes for grazing in semi-natural grasslands – do mowing or mulching represent valuable alternatives to maintain vegetation structure
Question: Which management treatments are suitable to replace historically applied grazing regimes? How and why does vegetation structure change following changes in management? Location: Semi-natural calcareous dry grasslands in southwest Germany. Methods: We analysed changes in floristic and functional composition induced by different management treatments (grazing, mowing, mulching, succession) in long-term experimental sites. First, floristic and functional distances between the initial conditions and the following years were determined. Second, we used RLQ analyses to include data on abiotic conditions, vegetation composition and functional traits in one common analysis. Finally, we applied cluster analyses on RLQ species scores to deduce functional groups. Results: In contrast to the historical management regime of grazing, all alternative management treatments led to changes in floristic and functional composition, depending on their intensity with respect to biomass removal. The distance analyses showed that mulching twice per year and mowing did not lead to strong changes in floristic or functional composition. However, RLQ analysis clearly provided evidence that only the grazed sites are in equilibrium, indicating that vegetation change still goes ahead. Conclusions: The current study clearly shows that RLQ is a powerful tool to elucidate ongoing processes that may remain hidden when separately analysing floristic and functional data. Alternative management treatments are not appropriate to sustain the typical disturbance dynamics of species-rich semi-natural grasslands. The less frequent an alternative management treatment is with respect to biomass removal, the less the floristic and functional structure can be maintained.
Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests
1. Atmospheric nitrogen (N) deposition is expected to change forest understorey plant community composition and diversity, but results of experimental addition studies and observational studies are not yet conclusive. A shortcoming of observational studies, which are generally based on resurveys or sampling along large deposition gradients, is the occurrence of temporal or spatial confounding factors. 2. We were able to assess the contribution of N deposition versus other ecological drivers on forest understorey plant communities by combining a temporal and spatial approach. Data from 1205 (semi‐)permanent vegetation plots taken from 23 rigorously selected understorey resurvey studies along a large deposition gradient across deciduous temperate forest in Europe were compiled and related to various local and regional driving factors, including the rate of atmospheric N deposition, the change in large herbivore densities and the change in canopy cover and composition. 3. Although no directional change in species richness occurred, there was considerable floristic turnover in the understorey plant community and a shift in species composition towards more shade‐tolerant and nutrient‐demanding species. However, atmospheric N deposition was not important in explaining the observed eutrophication signal. This signal seemed mainly related to a shift towards a denser canopy cover and a changed canopy species composition with a higher share of species with more easily decomposed litter. 4. Synthesis. Our multi‐site approach clearly demonstrates that one should be cautious when drawing conclusions about the impact of atmospheric N deposition based on the interpretation of plant community shifts in single sites or regions due to other, concurrent, ecological changes. Even though the effects of chronically increased N deposition on the forest plant communities are apparently obscured by the effects of canopy changes, the accumulated N might still have a significant impact. However, more research is needed to assess whether this N time bomb will indeed explode when canopies will open up again.