Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
108
result(s) for
"Berridge, Kent C"
Sort by:
Model-based and model-free Pavlovian reward learning: Revaluation, revision, and revelation
by
Berridge, Kent C.
,
Dayan, Peter
in
Behavioral Science and Psychology
,
Brain - physiology
,
Cognitive Psychology
2014
Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called
model-free
, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called
model-based
, uses representations of the environment, expectations, and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response, and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation.
Journal Article
Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula
by
Castro, Daniel C.
,
Berridge, Kent C.
in
Analgesics, Opioid - pharmacology
,
Animals
,
Biological Sciences
2017
Hedonic hotspots are brain sites where particular neurochemical stimulations causally amplify the hedonic impact of sensory rewards, such as “liking” for sweetness. Here, we report the mapping of two hedonic hotspots in cortex, where mu opioid or orexin stimulations enhance the hedonic impact of sucrose taste. One hedonic hotspot was found in anterior orbitofrontal cortex (OFC), and another was found in posterior insula. A suppressive hedonic coldspot was also found in the formof an intervening strip stretching from the posterior OFC through the anterior and middle insula, bracketed by the two cortical hotspots. Opioid/orexin stimulations in either cortical hotspot activated Fos throughout a distributed “hedonic circuit” involving cortical and subcortical structures. Conversely, cortical coldspot stimulation activated circuitry for “hedonic suppression.” Finally, food intake was increased by stimulations at several prefrontal cortical sites, indicating that the anatomical substrates in cortex for enhancing the motivation to eat are discriminable from those for hedonic impact.
Journal Article
Optogenetic self-stimulation in the nucleus accumbens: D1 reward versus D2 ambivalence
by
Robinson, Mike J. F.
,
Cole, Shannon L.
,
Berridge, Kent C.
in
Analysis
,
Animal behavior
,
Animals
2018
The nucleus accumbens (NAc) contains multiple subpopulations of medium spiny neurons (MSNs). One subpopulation expresses D1-type dopamine receptors, another expresses D2-type receptors, and a third expresses both. The relative roles in NAc of D1 neurons versus D2 neurons in appetitive motivation were assessed here. Specifically, we asked whether D1-Cre mice would instrumentally seek optogenetic self-stimulation specifically targeted at D1 MSNs in NAc, and similarly if D2-Cre mice would self-stimulate D2 neurons in NAc. Mice were implanted with Cre-targeted channelrhodopsin (ChR2) virus and optic fibers in NAc. Subsequently, mice could earn brief NAc laser illuminations by actively touching a metal spout in one task, or by going to a particular location in a separate task. Results indicated that D1 neuronal excitation in NAc supported intense self-stimulation in both tasks. D1-Cre mice earned hundreds to thousands of spout-touches per half-hour session, and also sought out locations that delivered NAc laser to excite D1 MSNs. By comparison, D2 ChR2 mice showed lower but still positive levels of self-stimulation in the spout-touch task, earning dozens to hundreds of NAc laser illuminations. However, in the location task, D2 mice failed to show positive self-stimulation. If anything, a few D2 individuals gradually avoided the laser location. Brain-wide measures indicated that D1 and D2 stimulations in NAc recruited heavily overlapping patterns of Fos activation in distant limbic structures. These results confirm that excitation of D1 MSNs in NAc supports strong incentive motivation to self-stimulate. They also suggest that excitation of D2 neurons in NAc supports self-stimulation under some conditions, but fails under others and possibly may even shift to negative avoidance.
Journal Article
The incentive sensitization theory of addiction: some current issues
2008
We present a brief overview of the incentive sensitization theory of addiction. This posits that addiction is caused primarily by drug-induced sensitization in the brain mesocorticolimbic systems that attribute incentive salience to reward-associated stimuli. If rendered hypersensitive, these systems cause pathological incentive motivation ('wanting') for drugs. We address some current questions including: what is the role of learning in incentive sensitization and addiction? Does incentive sensitization occur in human addicts? Is the development of addiction-like behaviour in animals associated with sensitization? What is the best way to model addiction symptoms using animal models? And, finally, what are the roles of affective pleasure or withdrawal in addiction?
Journal Article
The central amygdala recruits mesocorticolimbic circuitry for pursuit of reward or pain
by
Naffziger, Erin E.
,
Berridge, Kent C.
,
Warlow, Shelley M.
in
13/51
,
631/378/1662
,
631/378/1788
2020
How do brain mechanisms create maladaptive attractions? Here intense maladaptive attractions are created in laboratory rats by pairing optogenetic channelrhodopsin (ChR2) stimulation of central nucleus of amygdala (CeA) in rats with encountering either sucrose, cocaine, or a painful shock-delivering object. We find that pairings make the respective rats pursue either sucrose exclusively, or cocaine exclusively, or repeatedly self-inflict shocks. CeA-induced maladaptive attractions, even to the painful shock-rod, recruit mesocorticolimbic incentive-related circuitry. Shock-associated cues also gain positive incentive value and are pursued. Yet the motivational effects of paired CeA stimulation can be reversed to negative valence in a Pavlovian fear learning situation, where CeA ChR2 pairing increases defensive reactions. Finally, CeA ChR2 valence can be switched to neutral by pairing with innocuous stimuli. These results reveal valence plasticity and multiple modes for motivation via mesocorticolimbic circuitry under the control of CeA activation.
Brain disorders can create maladaptive attractions, such as in addiction or self-harming. Here the authors use multiple valence modes of the central amygdala to create such attractions, arbitrarily making rats into ‘sucrose addicts' or ‘cocaine addicts', or causing maladaptive attraction to shocks.
Journal Article
Affective valence in the brain: modules or modes?
2019
How do brain systems evaluate the affective valence of a stimulus — that is, its quality of being good or bad? One possibility is that a neural subsystem, or ‘module’ (such as a subregion of the brain, a projection pathway, a neuronal population or an individual neuron), is permanently dedicated to mediate only one affective function, or at least only one specific valence — an idea that is termed here the ‘affective modules’ hypothesis. An alternative possibility is that a given neural module can exist in multiple neurobiological states that give it different affective functions — an idea termed here the ‘affective modes’ hypothesis. This suggests that the affective function or valence mediated by a neural module need not remain permanently stable but rather can change dynamically across different situations. An evaluation of evidence for the ‘affective modules’ versus ‘affective modes’ hypotheses may be useful for advancing understanding of the affective organization of limbic circuitry.How does the brain generate positive or negative hedonic or motivational reactions (such as liking or disgust) to particular stimuli or events? In this Opinion article, Berridge evaluates two proposed mechanisms for the generation of affective valance in the brain.
Journal Article
Disentangling pleasure from incentive salience and learning signals in brain reward circuitry
by
Aldridge, J. Wayne
,
Berridge, Kent C
,
Smith, Kyle S
in
Amphetamine - pharmacology
,
Analgesics, Opioid - pharmacology
,
Animal cognition
2011
Multiple signals for reward--hedonic impact, motivation, and learned associative prediction--are funneled through brain mesocorticolimbic circuits involving the nucleus accumbens and ventral pallidum. Here, we show how the hedonic \"liking\" and motivation \"wanting\" signals for a sweet reward are distinctly modulated and tracked in this circuit separately from signals for Pavlovian predictions (learning). Animals first learned to associate a fixed sequence of Pavlovian cues with sucrose reward. Subsequent intraaccumbens microinjections of an opioid-stimulating drug increased the hedonic liking impact of sucrose in behavior and firing signals of ventral pallidum neurons, and likewise, they increased incentive salience signals in firing to the reward-proximal incentive cue (but did not alter firing signals to the learned prediction value of a reward-distal cue). Microinjection of a dopamine-stimulating drug instead enhanced only the motivation component but did not alter hedonic impact or learned prediction signals. Different dedicated neuronal subpopulations in the ventral pallidum tracked signal enhancements for hedonic impact vs. incentive salience, and a faster firing pattern also distinguished incentive signals from slower hedonic signals, even for a third overlapping population. These results reveal separate neural representations of wanting, liking, and prediction components of the same reward within the nucleus accumbens to ventral pallidum segment of mesocorticolimbic circuitry.
Journal Article
Optogenetic mapping of feeding and self-stimulation within the lateral hypothalamus of the rat
2020
The lateral hypothalamus (LH) includes several anatomical subregions involved in eating and reward motivation. This study explored localization of function across different LH subregions in controlling food intake stimulated by optogenetic channelrhodopsin excitation, and in supporting laser self-stimulation. We particularly compared the tuberal LH subregion, the posterior LH subregion, and the lateral preoptic area. Local diameters of tissue optogenetically stimulated within the LH were assessed by measuring laser-induced Fos plumes and Jun plumes via immunofluorescence surrounding optic fiber tips. Those plume diameters were used to map localization of function for behavioral effects elicited by LH optogenetic stimulation. Optogenetic stimulation of the tuberal subsection of the LH produced the most robust eating behavior and food intake initially, but produced only mild laser self-stimulation in the same rats. However, after repeated exposures to optogenetic stimulation, tuberal LH behavioral profiles shifted toward more self-stimulation and less food intake. By contrast, stimulation of the lateral preoptic area produced relatively little food intake or self-stimulation, either initially or after extended stimulation experience. Stimulation in the posterior LH subregion supported moderate self-stimulation, but not food intake, and at higher laser intensity shifted valence to evoke escape behaviors. We conclude that the tuberal LH subregion may best mediate stimulation-bound increases in food intake stimulated by optogenetic excitation. However, incentive motivational effects of tuberal LH stimulation may shift toward self-stimulation behavior after repeated stimulation. By contrast, the lateral preoptic area and posterior LH do not as readily elicit either eating behavior or laser self-stimulation, and may be more prone to higher-intensity aversive effects.
Journal Article
Orexin in Rostral Hotspot of Nucleus Accumbens Enhances Sucrose ‘Liking’ and Intake but Scopolamine in Caudal Shell Shifts ‘Liking’ Toward ‘Disgust’ and ‘Fear’
2016
The nucleus accumbens (NAc) contains a hedonic hotspot in the rostral half of medial shell, where opioid agonist microinjections are known to enhance positive hedonic orofacial reactions to the taste of sucrose ('liking' reactions). Within NAc shell, orexin/hypocretin also has been reported to stimulate food intake and is implicated in reward, whereas blockade of muscarinic acetylcholine receptors by scopolamine suppresses intake and may have anti-reward effects. Here, we show that NAc microinjection of orexin-A in medial shell amplifies the hedonic impact of sucrose taste, but only within the same anatomically rostral site, identical to the opioid hotspot. By comparison, at all sites throughout medial shell, orexin microinjections stimulated 'wanting' to eat, as reflected by increases in intake of palatable sweet chocolates. At NAc shell sites outside the hotspot, orexin selectively enhanced 'wanting' to eat without enhancing sweetness 'liking' reactions. In contrast, microinjections of the antagonist scopolamine at all sites in NAc shell suppressed sucrose 'liking' reactions as well as suppressing intake of palatable food. Conversely, scopolamine increased aversive 'disgust' reactions elicited by bitter quinine at all NAc shell sites. Finally, scopolamine microinjections localized to the caudal half of medial shell additionally generated a fear-related anti-predator reaction of defensive treading and burying directed toward the corners of the transparent chamber. Together, these results confirm a rostral hotspot in NAc medial shell as a unique site for orexin induction of hedonic 'liking' enhancement, similar to opioid enhancement. They also reveal distinct roles for orexin and acetylcholine signals in NAc shell for hedonic reactions and motivated behaviors.
Journal Article