Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
43 result(s) for "Bertaina, Mario"
Sort by:
Results of the missions within JEM-EUSO program
The JEM-EUSO program includes several missions employing fluorescence detectors to make a proof-of-principle of the UHECR observation from space and to raise the technological level of the instrumentation to be employed in a space mission like K-EUSO and POEMMA. EUSO-TA, installed at the Telescope Array (TA) site in Utah in 2013, has already detected 9 UHECRs in coincidence with TA Fluorescence Detector. EUSO-Balloon flew on board a stratospheric balloon in 2014. It measured the UV intensity on forests, lakes and the city of Timmins as well as proved the observation of UHECR-like events by shooting laser tracks. EUSO-SPB was launched on board a Super Pressure Balloon (SPB) in 2017. It proved the functionality of all the subsystems of the telescope on a long term; observed the UV emission on oceans and had a self-trigger system to detect UHECRs. A more ambitious mission (EUSOSPB2) is planned. TUS, on board the Lomonosov satellite in orbit since 2016, has detected a few interesting signals in the UHECR trigger-mode. Mini-EUSO is in a final phase of integration and will be installed inside the International Space Station (ISS) in 2019. The main results obtained so far by these experiments are summarized.
Results from the first missions of the JEM-EUSO program
The origin and nature of Ultra-High Energy Cosmic Rays (UHECRs) remain unsolved in contemporary astroparticle physics. To give an answer to these questions is rather challenging because of the extremely low flux of a few per km 2 per century at extreme energies such as E > 5 × 10 19 eV. The objective of the JEM-EUSO program, Extreme Universe Space Observatory, is the realization of a space mission devoted to scientific research of cosmic rays of highest energies. Its super-wide-field telescope will look down from space onto the night sky to detect UV photons emitted from air showers generated by UHECRs in the atmosphere. The JEM-EUSO program includes different missions using fluorescence detectors to make a proof-of-principle of the UHECR observation from space and to raise the technological level of the instrumentation to be employed in a space mission. EUSO-TA, installed at the Telescope Array site in Utah in 2013, is in operation. It has already detected 9 UHECRs in coincidence with Telescope Array fluorescence detector at Black Rock Mesa. EUSO-Balloon flew on board a stratospheric balloon in August 2014. It measured the UV intensity on forests, lakesandthecityofTimminsaswellasprovedtheobservationofUHECR-likeeventsbyshootinglasertracks. EUSO-SPB was launched on board a super pressure balloon on April 25 th and flew for 12 days. It proved the functionality of all the subsystems of the telescope on a typical duration of a balloon flight; observed the UV emission on oceans and has a self-trigger system to observe UHECRs with energy E > 3×10 18 eV. TUS, the Russian mission on board the Lomonosov satellite in orbit since April 28 th 2016, is now included in the JEMEUSO program and has detected so far in the UHECR trigger-mode a few interesting signals. Mini-EUSO is in its final phase of integration in Italy, where several performance tests are being held. Mini-EUSO will be installed inside the International Space Station (ISS) in 2019. The main results obtained so far by such missions are summarized and put in prospect of future space detectors such as K-EUSO and POEMMA.
Extensive Air Showers and Cosmic Ray Physics above 1017 eV
Cosmic Rays above 1017 eV allow studying hadronic interactions at energies that can not be attained at accelerators yet. At the same time hadronic interaction models have to be applied to the cosmic-ray induced air-shower cascades in atmosphere to infer the nature of cosmic rays. The reliability of air-shower simulations has become the source of one of the largest systematic uncertainty in the interpretation of cosmic-ray data due to the uncertainties in modeling the hadronic interaction driving the air-shower development. This paper summarises in the first part the recent results on the cosmic ray energy spectrum, composition and anisotropy from the knee region to the GZK cutoff [1, 2] of the spectrum by means of ground-based experiments. Most of the information reported in this contribution is taken from [3–5]. Aspects interconnecting cosmic ray and particle physics are reviewed in the second part of the paper.
The Cherenkov Camera for the PBR Mission
POEMMA-Balloon with Radio (PBR) is designed as a payload for a NASA suborbital Super Pressure Balloon that will circle over the Southern Ocean and a mission duration as long as 50 days. The PBR instrument consists of a 1.1 m aperture Schmidt telescope similar to the POEMMA design with two cameras in its focal surface: a Fluorescence Camera (FC) and a Cherenkov Camera (CC). The CC camera is mainly devoted to the observation of cosmic-ray-induced high-altitude horizontal air showers (HAHAs) and search for neutrino-induced upward-going EAS. It will be made of 2048 SiPMs with a surface of 3 × 3 mm2 and a FoV of 12° by 6°, covering a spectral range of 320–900 nm. The CC camera is an innovative detector currently under construction. In this paper, information about its current status will be given.
Status of the K-EUSO Orbital Detector of Ultra-High Energy Cosmic Rays
K-EUSO (KLYPVE-EUSO) is a planned orbital mission aimed at studying ultra-high energy cosmic rays (UHECRs) by detecting fluorescence and Cherenkov light emitted by extensive air showers in the nocturnal atmosphere of Earth in the ultraviolet (UV) range. The observatory is being developed within the JEM-EUSO collaboration and is planned to be deployed on the International Space Station after 2025 and operated for at least two years. The telescope, consisting of ∼105 independent pixels, will allow a spatial resolution of ∼0.6 km on the ground, and, from a 400 km altitude, it will achieve a large and full sky exposure to sample the highest energy range of the UHECR spectrum. We provide a comprehensive review of the current status of the development of the K-EUSO experiment, paying special attention to its hardware parts and expected performance. We demonstrate how results of the K-EUSO mission can complement the achievements of the existing ground-based experiments and push forward the intriguing studies of ultra-high energy cosmic rays, as well as bring new knowledge about other phenomena manifesting themselves in the atmosphere in the UV range.
The JEM-EUSO Program for UHECR Studies from Space
To take up the challenge of understanding the origin of the ultra-high-energy cosmic rays (UHECRs), new observational means appear necessary. The JEM-EUSO Collaboration has undertaken to open the space road to UHECR studies. For more than a decade, it has been developing a realistic program to measure the UHECRs from space with unprecedented aperture, together with complementary scientific objectives in a broader multidisciplinary context. Several intermediate missions have already been completed (on the ground: EUSO-TA; under stratospheric ballons: EUSO-Balloon and EUSO-SPB1; in space: TUS, and on-board the ISS: MINI-EUSO), and others are in preparation for flight (EUSO-SPB2), under review (K-EUSO: currently on hold), or proposed for the next decade (POEMMA). We report on the general status of the JEM-EUSO program, underlining that its technology has now reached operational maturity, and is ready for actual cosmic-ray shower detection from above.
Implementation of the Stack-CNN Algorithm for Space Debris Detection on FPGA Board
The detection of faint, fast-moving objects such as space debris, in optical data is a major challenge due to their low signal-to-background ratio and short visibility time. This work addresses this issue by implementing the Stack-CNN algorithm, originally designed for offline analysis, on an FPGA-based platform to enable real-time triggering capabilities in constrained space hardware environments. The Stack-CNN combines a stacking method to enhance the signal-to-noise ratio of moving objects across multiple frames with a lightweight convolutional neural network optimized for embedded inference. The FPGA implementation was developed using a Xilinx Zynq Ultrascale+ platform and achieves low-latency, power-efficient inference compatible with CubeSat systems. Performance was evaluated using both a physics-based simulation framework and data acquired during outdoor experimental campaigns. The trigger maintains high detection efficiency for 10 cm-class targets up to 30–40 km distance and reliably detects real satellite tracks with signal levels as low as 1% above background. These results validate the feasibility of on-board real-time debris detection using embedded AI, and demonstrate the robustness of the algorithm under realistic operational conditions. The study was conducted in the context of a broader technology demonstration project, called DISCARD, aimed at increasing space situational awareness capabilities on small platforms.
A Configurable 64-Channel ASIC for Cherenkov Radiation Detection from Space
This work presents the development of a 64-channel application-specific integrated circuit (ASIC), implemented to detect the optical Cherenkov light from sub-orbital and orbital altitudes. These kinds of signals are generated by ultra-high energy cosmic rays (UHECRs) and cosmic neutrinos (CNs). The purpose of this front-end electronics is to provide a readout unit for a matrix of silicon photo-multipliers (SiPMs) to identify extensive air showers (EASs). Each event can be stored into a configurable array of 256 cells where the on-board digitization can take place with a programmable 12-bits Wilkinson analog-to-digital converter (ADC). The sampling, the conversion process, and the main digital logic of the ASIC run at 200 MHz, while the readout is managed by dedicated serializers operating at 400 MHz in double data rate (DDR). The chip is designed in a commercial 65 nm CMOS technology, ensuring a high configurability by selecting the partition of the channels, the resolution in the interval 8–12 bits, and the source of its trigger. The production and testing of the ASIC is planned for the forthcoming months.
Search for Extreme Energy Cosmic Rays with the TUS orbital telescope and comparison with ESAF
The Tracking Ultraviolet Setup (TUS) detector was launched on April 28, 2016 as a part of the scientific payload of the Lomonosov satellite. TUS is a pathfinder mission for future space-based observation of Extreme-Energy Cosmic Rays (EECRs, E > 5x10 19 eV) with experiments such as K-EUSO. TUS data offer the opportunity to develop strategies in the analysis and reconstruction of the events which will be essential for future space-based missions. During its operation, TUS has detected about 80 thousand events which have been subject to an offline analysis to select among them those that satisfy basic temporal and spatial criteria of EECRs. A few events passed this first screening. In order to perform a deeper analysis of such candidates, a dedicated version of ESAF (EUSO Simulation and Analysis Framework) code as well as a detailed modelling of TUS optics and detector are being developed.