Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
333 result(s) for "Bertrand, Cédric"
Sort by:
Molluscicidal and parasiticidal activities of Eryngium triquetrum essential oil on Schistosoma mansoni and its intermediate snail host Biomphalaria glabrata, a double impact
Background Freshwater snails are the intermediate hosts of a large variety of trematode flukes such as Schistosoma mansoni responsible for one of the most important parasitic diseases caused by helminths, affecting 67 million people worldwide. Recently, the WHO Global Vector Control Response 2017–2030 (GVCR) programme reinforced its message for safer molluscicides as part of required strategies to strengthen vector control worldwide. Here, we present the essential oil from Eryngium triquetrum as a powerful product with molluscicide and parasiticide effect against S. mansoni and the snail intermediate host Biomphalaria glabrata. Methods In the present study, we describe using several experimental approaches, the chemical composition of E. triquetrum essential oil extract and its biological effects against the snail B. glabrata and its parasite S. mansoni . Vector and the free-swimming larval stages of the parasite were exposed to different oil concentrations to determine the lethal concentration required to produce a mortality of 50% (LC 50 ) and 90% (LC 90 ). In addition, toxic activity of this essential oil was analyzed against embryos of B. glabrata snails by monitoring egg hatching and snail development. Also, short-time exposure to sublethal molluscicide concentrations on S. mansoni miracidia was performed to test a potential effect on parasite infectivity on snails. Mortality of miracidia and cercariae of S. mansoni is complete for 5, 1 and 0.5 ppm of oil extract after 1 and 4 h exposure. Results The major chemical component found in E. triquetrum oil determined by GC-FID and GC/MS analyses is an aliphatic polyacetylene molecule, the falcarinol with 86.9–93.1% of the total composition. The LC 50 and LC 90 values for uninfected snails were 0.61 and 1.02 ppm respectively for 24 h exposure. At 0.5 ppm, the essential oil was two times more toxic to parasitized snails with a mortality rate of 88.8 ± 4.8%. Moderate embryonic lethal effects were observed at the concentration of 1 ppm. Severe surface damage in miracidia was observed with a general loss of cilia that probably cause their immobility. Miracidia exposed 30 min to low concentration of plant extract (0.1 ppm) were less infective with 3.3% of prevalence compare to untreated with a prevalence of 44%. Conclusions Essential oil extracted from E. triquetrum and falcarinol must be considered as a promising product for the development of new interventions for schistosomiasis control and could proceed to be tested on Phase II according to the WHO requirements.
Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum
• Most Azospirillum plant growth-promoting rhizobacteria (PGPR) benefit plant growth through source effects related to free nitrogen fixation and ⁄ or phytohormone production, but little is known about their potential effects on plant physiology. These effects were assessed by comparing the early impacts of three Azospirillum inoculant strains on secondary metabolite profiles of two different maize (Zea mays) cultivars. • After 10 d of growth in nonsterile soil, maize methanolic extracts were analyzed by reverse-phase high-performance liquid chromatography (RP-HPLC) and secondary metabolites identified by liquid chromatography ⁄ mass spectrometry (LC ⁄ MS) and nuclear magnetic resonance (NMR). • Seed inoculation resulted in increased shoot biomass (and also root biomass with one strain) of hybrid PR37Y15 but had no stimulatory effect on hybrid DK315. In parallel, Azospirillum inoculation led to major qualitative and quantitative modifications of the contents of secondary metabolites, especially benzoxazinoids, in the maize plants. These modifications depended on the PGPR strain · plant cultivar combination. • Thus, Azospirillum inoculation resulted in early, strain-dependent modifications in the biosynthetic pathways of benzoxazine derivatives in maize in compatible interactions. This is the first study documenting a PGPR effect on plant secondary metabolite profiles, and suggests the establishment of complex interactions between Azospirillum PGPR and maize.
Chemical composition and antifungal activity of plant extracts traditionally used in organic and biodynamic farming
Five plant extracts traditionally used in organic and biodynamic farming for pest control and antifungal (downy mildew) disease management were selected after a farmer survey and analyzed for their chemical composition in LC-PDA-MS-MS and using adapted analytical method from food chemistry for determination of class of component (e.g., protein, sugar, lipids…). Their antifungal activity against Penicillium expansum, Botrytis cinerea, Botrytis allii, brown rot causing agents (Monilinia laxa and Monilinia fructigena), and grape downy mildew (Plasmopara viticola) was examined in vitro. White willow (Salix alba) and absinthe (Artemisia absinthium) ethanolic extracts were found to be the most effective in particular against Plasmopara viticola, with a total inhibition of spores germination when applied at 1000 mg/L. These extracts also showed a relatively low toxicity during preliminary ecotoxicological assays on Daphnia pulex. Extract from the bark of white willow contained some flavonoids, especially flavanones (eriodyctiol and derivates) and flavanols (catechins and derivates), as major compounds, whereas absinthe extract was rich in O-methylated flavanols and hydroxycinnamic acids. Thujone content in this extract was also determined by external calibration in GC-MS analysis, and its value was 0.004% dry extract.
Biochemical mechanisms of acaricidal activity of 2,4-di-tert-butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus
Tetranychus cinnabarinus (Boisduval) is one of the most economically important and highly polyphagous herbivorous pests in fields and greenhouses worldwide. We previously reported that 2,4-di-tert-butylphenol (DTBP) and ethyl oleate (EO) showed significantly acaricidal, repellent and oviposition deterrent properties against T. cinnabarinus via an unknown mechanism. In this study, the acaricidal activities of DTBP and EO and their biochemical mechanisms in controlling T. cinnabarinus were investigated at different time points by assessing the associated changes in toxic symptoms, potential target-related enzyme activities and seven neurotransmitters belonging to the biogenic amines (BAs). The results showed that the median lethal times (LT 50 ) for DTBP and EO were 8 and 15 h after treatment, respectively. Using dynamic symptomatology observations, typical neurotoxic symptoms including excitation, convulsion and paralysis were observed in the mites treated with DTBP and EO. Furthermore, the two compounds exerted significant inhibitory activity on monoamine oxidase (MAO) in adult T. cinnabarinus females in vitro and in vivo and had little effect on acetylcholinesterase (AChE) activity. The content levels of the seven BAs analyzed by UPLC-3QMS were higher in the mites treated with DTBP and EO than in the controls, except for phenethylamine (PEA) (for DTBP and EO) and octopamine (OA) (for EO). These results demonstrate that both DTBP and EO exert effects on T. cinnabarinus that are possibly consequences of their preventive effects on the deamination of BAs in the nervous system, most likely through inhibitory effects on MAO or MAO-like enzymes and/or interactions with certain special biogenic amine G protein-coupled receptors.
Metabarcoding and Metabolomics Reveal the Effect of the Invasive Alien Tree Miconia calvescens DC. on Soil Diversity on the Tropical Island of Mo’orea (French Polynesia)
Miconia calvescens is a dominant invasive alien tree species that threatens several endemic plants in French Polynesia (South Pacific). While most analyses have been performed at the scale of plant communities, the effects on the rhizosphere have not been described so far. However, this compartment can be involved in plant fitness through inhibitory activities, nutritive exchanges, and communication with other organisms. In particular, it was not known whether M. calvescens forms specific associations with soil organisms or has a specific chemical composition of secondary metabolites. To tackle these issues, the rhizosphere of six plant species was sampled on the tropical island of Mo’orea in French Polynesia at both the seedling and tree stages. The diversity of soil organisms (bacteria, microeukaryotes, and metazoa) and of secondary metabolites was studied using high-throughput technologies (metabarcoding and metabolomics, respectively). We found that trees had higher effects on soil diversity than seedlings. Moreover, M. calvescens showed a specific association with microeukaryotes of the Cryptomycota family at the tree stage. This family was positively correlated with the terpenoids found in the soil. Many terpenoids were also found within the roots of M. calvescens, suggesting that these molecules were probably produced by the plant and favored the presence of Cryptomycota. Both terpenoids and Cryptomycota were thus specific chemicals and biomarkers of M. calvescens. Additional studies must be performed in the future to better understand if they contribute to the success of this invasive tree.
Essential Oils from Two Apiaceae Species as Potential Agents in Organic Crops Protection
Chemical composition and herbicidal, antifungal, antibacterial and molluscicidal activities of essential oils from Choukzerk, Eryngium triquetrum, and Alexander, Smyrnium olusatrum, from western Algeria were characterized. Capillary GC-FID and GC/MS were used to investigate chemical composition of both essential oils, and the antifungal, antibacterial, molluscicidal and herbicidal activities were determined by % inhibition. Collective essential oil of E. triquetrum was dominated by falcarinol (74.8%) and octane (5.6%). The collective essential oil of S. olusatrum was dominated by furanoeremophilone (31.5%), furanodiene+curzurene (19.3%) and (E)-β-caryophyllene (11%). The E. triquetrum oil was tested and a pure falcarinol (99%) showed virtuous herbicidal and antibacterial activities against potato blackleg disease, Pectobacterium atrosepticum, and Gram-negative soil bacterium, Pseudomonas cichorii (85 and 100% inhibition, respectively), and high ecotoxic activity against brine shrimp, Artemia salina, and the freshwater snail, Biomphalaria glabrata, with an IC50 of 0.35 µg/mL and 0.61 µg/mL, respectively. Essential oil of S. olusatrum showed interesting antibacterial and ecotoxic activity and good herbicidal activity against watercress seeds, Lepidium sativum (74% inhibition of photosynthesis, 80% mortality on growth test on model watercress), while the furanoeremophilone isolated from the oil (99% pure) showed moderate herbicidal activity. Both oils showed excellent antifungal activity against Fusarium. Both oils and especially falcarinol demonstrated good potential as new biocontrol agents in organic crop protection.
Differential responses of Oryza sativa secondary metabolism to biotic interactions with cooperative, commensal and phytopathogenic bacteria
Main conclusion Profiling of plant secondary metabolite allows to differentiate the different types of ecological interactions established between rice and bacteria. Rice responds to ecologically distinct bacteria by altering its content of flavonoids and hydroxycinnamic acid derivatives. Plants' growth and physiology are strongly influenced by the biotic interactions that plants establish with soil bacterial populations. Plants are able to sense and to respond accordingly to ecologically distinct bacteria, by inducing defense pathways against pathogens to prevent parasitic interactions, and by stimulating the growth of root-associated beneficial or commensal bacteria through root exudation. Plant secondary metabolism is expected to play a major role in this control. However, secondary metabolite responses of a same plant to cooperative, commensal and deleterious bacteria have so far never been compared. The impact of the plant growth-promoting rhizobacteria (PGPR) Azospirillum lipoferum 4B on the secondary metabolite profiles of two Oryza sativa L. cultivars (Cigalon and Nipponbare) was compared to that of a rice pathogen Burkholderia glumae AU6208, the causing agent of bacterial panicle blight and of a commensal environmental bacteria Escherichia coli B6. Root and shoot rice extracts were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC). Principal component analyses (PCAs) pinpointed discriminant secondary metabolites, which were characterized by mass spectrometry. Direct comparison of metabolic profiles evidenced that each bacterial ecological interaction induced distinct qualitative and quantitative modifications of rice secondary metabolism, by altering the content of numerous flavonoid compounds and hydroxycinnamic acid (HCA) derivatives. Secondary metabolism varied according to the cultivars and the interaction types, demonstrating the relevance of secondary metabolic profiling for studying plant–bacteria biotic interactions.
Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress
Temperature can modify membrane fluidity and thus affects cellular functions and physiological activities. This study examines lipid remodelling in the marine symbiotic organism, Tridacna maxima, during a time series of induced thermal stress, with an emphasis on the morphology of their symbiont Symbiodinium. First, we show that the French Polynesian giant clams harbour an important proportion of saturated fatty acids (SFA), which reflects their tropical location. Second, in contrast to most marine organisms, the total lipid content in giant clams remained constant under stress, though some changes in their composition were shown. Third, the stress-induced changes in fatty acid (FA) diversity were accompanied by an upregulation of genes involved in lipids and ROS pathways. Finally, our microscopic analysis revealed that for the giant clam's symbiont, Symbiodinium, thermal stress led to two sequential cell death processes. Our data suggests that the degradation of Symbiodinium cells could provide an additional source of energy to T. maxima in response to heat stress.
Deciphering Prunus Responses to PPV Infection: A Way toward the Use of Metabolomics Approach for the Diagnostic of Sharka Disease
Sharka disease, caused by Plum pox virus (PPV), induces several changes in Prunus. In leaf tissues, the infection may cause oxidative stress and disrupt the photosynthetic process. Moreover, several defense responses can be activated after PPV infection and have been detected at the phytohormonal, transcriptomic, proteomic, and even translatome levels. As proposed in this review, some responses may be systemic and earlier to the onset of symptoms. Nevertheless, these changes are highly dependent among species, variety, sensitivity, and tissue type. In the case of fruit tissues, PPV infection can modify the ripening process, induced by an alteration of the primary metabolism, including sugars and organic acids, and secondary metabolism, including phenolic compounds. Interestingly, metabolomics is an emerging tool to better understand Prunus–PPV interactions mainly in primary and secondary metabolisms. Moreover, through untargeted metabolomics analyses, specific and early candidate biomarkers of PPV infection can be detected. Nevertheless, these candidate biomarkers need to be validated before being selected for a diagnostic or prognosis by targeted analyses. The development of a new method for early detection of PPV-infected trees would be crucial for better management of the outbreak, especially since there is no curative treatment.