Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Besson, Juliette"
Sort by:
A gold nanoparticle/peptide vaccine designed to induce SARS-CoV-2-specific CD8 T cells: a double-blind, randomized, phase 1 study in Switzerland
Background New vaccines with broader protection against SARS-CoV-2 are needed to reduce the risk of immune escape and provide broad and long-lasting cellular immunity. The objectives of the naNO-COVID trial were to evaluate the safety and immunogenicity of a CD8 + T cell, gold nanoparticle-based, peptide COVID-19 vaccine. Methods A randomized, double-blind, vehicle-controlled, phase 1 trial in healthy adults to receive PepGNP-Covid19 or Vehicle-GNP, followed over 180 days, using a dose-escalation strategy. Results Twenty participants received PepGNP-Covid19 (low dose [LD] or high dose [HD], n  = 10 each) and six Vehicle-GNP (LD or HD, n  = 3 each). Vaccinations were safe. No serious adverse events were reported. Most of the adverse events were mild, two adverse events of special interest related to the product (fever and fatigue). Reactogenicity was similar overall between vaccine, comparator, and doses. Virus-specific humoral responses in LD PepGNP-Covid19 and Vehicle-GNP groups coincided with SARS-CoV-2 infections. PepGNP-Covid19 vaccination induced the modulation of Covid19-specific CD137 + CD69 + CD8 + , and an increase at day 35 particularly in central and effector memory T cells in LD group, and in late effector memory cells in HD group. Conclusions The favourable safety profile and cellular responses observed support further development of PepGNP-Covid19. Trial registration ClinicalTrials.gov, NCT05113862, approved 09.11.2021.
Human gnathostomiasis in Sri Lanka: an underreported disease?
Abstract A healthy young man from Sri Lanka, currently living in Switzerland, consulted at the University Hospital of Geneva with a history of painful erythema and swelling of the left forearm. Laboratory tests showed a slight eosinophilia. Western blot serology for Gnathostoma spp, inconclusive at presentation, became positive 2 weeks later.
Neuroinflammation, myelin and behavior: Temporal patterns following mild traumatic brain injury in mice
Traumatic brain injury (TBI) results in white matter injury (WMI) that is associated with neurological deficits. Neuroinflammation originating from microglial activation may participate in WMI and associated disorders. To date, there is little information on the time courses of these events after mild TBI. Therefore we investigated (i) neuroinflammation, (ii) WMI and (iii) behavioral disorders between 6 hours and 3 months after mild TBI. For that purpose, we used experimental mild TBI in mice induced by a controlled cortical impact. (i) For neuroinflammation, IL-1b protein as well as microglial phenotypes, by gene expression for 12 microglial activation markers on isolated CD11b+ cells from brains, were studied after TBI. IL-1b protein was increased at 6 hours and 1 day. TBI induced a mixed population of microglial phenotypes with both pro-inflammatory, anti-inflammatory and immunomodulatory markers from 6 hours to 3 days post-injury. At 7 days, microglial activation was completely resolved. (ii) Three myelin proteins were assessed after TBI on ipsi- and contralateral corpus callosum, as this structure is enriched in white matter. TBI led to an increase in 2',3'-cyclic-nucleotide 3'-phosphodiesterase, a marker of immature and mature oligodendrocyte, at 2 days post-injury; a bilateral demyelination, evaluated by myelin basic protein, from 7 days to 3 months post-injury; and an increase in myelin oligodendrocyte glycoprotein at 6 hours and 3 days post-injury. Transmission electron microscopy study revealed various myelin sheath abnormalities within the corpus callosum at 3 months post-TBI. (iii) TBI led to sensorimotor deficits at 3 days post-TBI, and late cognitive flexibility disorder evidenced by the reversal learning task of the Barnes maze 3 months after injury. These data give an overall invaluable overview of time course of neuroinflammation that could be involved in demyelination and late cognitive disorder over a time-scale of 3 months in a model of mild TBI. This model could help to validate a pharmacological strategy to prevent post-traumatic WMI and behavioral disorders following mild TBI.
Antiviral Treatment of HCV-Infected Patients with B-Cell Non-Hodgkin Lymphoma: ANRS HC-13 Lympho-C Study
Hepatitis C virus (HCV) infection is associated with lymphoproliferative disorders and B-cell non-Hodgkin lymphomas (B-NHLs). Evaluation of the efficacy and safety profiles of different antiviral therapies in HCV patients with B-NHL is warranted. First, we evaluated the sustained virologic response (SVR) and safety of Peg-interferon-alpha (Peg-IFN) + ribavirin +/- first protease inhibitors (PI1s) therapy in 61 HCV patients with B-NHL enrolled in a nationwide observational survey compared with 94 matched HCV-infected controls without B-NHL. In a second series, interferon-free regimens using a newly optimal combination therapy with direct-acting antiviral drugs (DAAs) were evaluated in 10 patients with HCV and B-NHL. The main lymphoma type was diffuse large B-cell lymphoma (38%) followed by marginal zone lymphoma (31%). In the multivariate analysis, patients with B-NHL treated by Peg-IFN-based therapy exhibited a greater SVR rate compared with controls, 50.8% vs 30.8%, respectively, p<0.01, odds ratio (OR) = 11.2 [2.3, 52.8]. B-NHL response was better (p = 0.02) in patients with SVR (69%) than in patients without SVR (31%). Premature discontinuation of Peg-IFN-based therapy was significantly more frequent in the B-NHL group (19.6%) compared with the control group (6.3%), p<0.02. Overall, survival was significantly enhanced in the controls than in the B-NHL group (hazard ratio = 34.4 [3.9, 304.2], p< 0.01). Using DAAs, SVR was achieved in 9/10 patients (90%). DAAs were both well tolerated and markedly efficient. The virologic response of HCV-associated B-NHL is high. Our study provides a comprehensive evaluation of different strategies for the antiviral treatment of B-NHL associated with HCV infection.
L’utilisation du téléphone au volant chez les commerciaux hommes et femmes : habitudes de conduite et prises de risque
Parmi les risques routiers professionnels, le téléphone au volant est un facteur multipliant les risques d’accident. Si l’on sait que le bluetooth est aujourd’hui le seul équipement toléré sur le plan légal, on n’a par contre aucune information sur les habitudes d’utilisation du téléphone au volant chez les commerciaux. Cette enquête menée auprès d’un groupe de commerciaux français hommes et femmes (N = 59) a pour objectif de clarifier leurs habitudes de conduite et les risques pouvant en découler. Sur l’ensemble de l’échantillon, les résultats de cette étude apportent des informations nouvelles sur les risques routiers professionnels. On observe des aspects différentiels en fonction du sexe comme l’utilisation des infrastructures routières. D’autres différences sont observées dans la gestion des aspects vie professionnelle/vie privée, les répondants ayant des difficultés à séparer ces deux sphères s’exposent à plus de risques sur la route. Plusieurs mesures préventives pourraient être adoptées pour réduire ces risques.
Loss of the Wnt/ -catenin pathway in microglia of the developing brain drives pro-inflammatory activation leading to white matter injury
Microglia-mediated neuroinflammation is key in numerous brain diseases including encephalopathy of the preterm born infant. Microglia of the still-developing brain have unique properties but little is known of how they regulate their inflammatory activation. This is important information as every year 9 million preterm born infants acquire persisting neurological injuries associated with encephalopathy and we lack strategies to prevent and treat these injuries. Our study of activation state regulators in immature brain microglia found a robust down-regulation of Wnt/ -catenin pathway receptors, ligands and intracellular signalling members in pro-inflammatory microglia. We undertook our studies initially in a mouse model of microglia-mediated encephalopathy including the clinical hallmarks of oligodendrocyte injury and hypomyelination. We purified microglia from this model and applied a genome-wide transcriptomics analysis validated with quantitative profiling. We then verified that down-regulation of the Wnt/ -catenin signalling cascade is sufficient and necessary to drive microglia into an oligodendrocyte-damaging phenotype using multiple pharmacological and genetic approaches in vitro and in vivo in mice and in humans and zebrafish. We also demonstrated that genomic variance in the WNT/ -catenin pathway is associated with the anatomical connectivity phenotype of the human preterm born infant. This integrated analysis of genomics and connectivity, as a surrogate for oligodendrocyte function/myelination, is agnostic to cell type. However, this data indicates that the WNT pathway is relevant to human brain injury and specifically that WNT variants may be useful clinically for injury stratification and prognosis. Finally, we performed a translational experiment using a BBB penetrant microglia-specific targeting 3DNA nanocarrier to deliver a Wnt agonist specifically and directly to microglia in vivo. Increasing the activity of the Wnt/ -catenin pathway specifically in microglia in our model of microglia-mediated encephalopathy was able to reduce microglial pro-inflammatory activation, prevent the typical hypomyelination and also prevent the long-term memory deficit associated with this hypomyelination. In summary, the canonical Wnt/ -catenin pathway regulates microglial activation and up-regulation of this pathway could be a viable neurotherapeutic strategy.
Loss of the Wnt/β-catenin pathway in microglia of the developing brain drives pro-inflammatory activation leading to white matter injury
Microglia of the developing brain have unique functional properties but how their activation states is regulated is poorly understood. Inflammatory activation of microglia in the still-developing brain of preterm born infants is associated with permanent neurological sequelae in 9 million infants every year. Investigating the regulators of microglial activation in the developing brain with multiple models of neuroinflammation-mediated injury and primary human microglia we found that a reduction in Wnt/β-catenin signalling is necessary and sufficient to drive an oligodendrocyte-injurious microglial phenotype. We validated in a cohort of preterm born infants that genomic variation in the WNT pathway is associated with the levels of connectivity found in their brains. Using a Wnt agonist delivered by a BBB penetrant microglia-specific targeting nanocarrier we prevented in our animal model the pro-inflammatory microglial activation, white matter injury and behavioural deficits. Collectively, these data validate that the Wnt pathway regulates microglial activation, is critical in the evolution of an important form of human brain injury and is a viable therapeutic target.