Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Beth, Sanne A."
Sort by:
Diversity, compositional and functional differences between gut microbiota of children and adults
The gut microbiota has been shown to play diverse roles in human health and disease although the underlying mechanisms have not yet been fully elucidated. Large cohort studies can provide further understanding into inter-individual differences, with more precise characterization of the pathways by which the gut microbiota influences human physiology and disease processes. Here, we aimed to profile the stool microbiome of children and adults from two population-based cohort studies, comprising 2,111 children in the age-range of 9 to 12 years (the Generation R Study) and 1,427 adult individuals in the range of 46 to 88 years of age (the Rotterdam Study). For the two cohorts, 16S rRNA gene profile datasets derived from the Dutch population were generated. The comparison of the two cohorts showed that children had significantly lower gut microbiome diversity. Furthermore, we observed higher relative abundances of genus Bacteroides in children and higher relative abundances of genus Blautia in adults. Predicted functional metagenome analysis showed an overrepresentation of the glycan degradation pathways, riboflavin (vitamin B2), pyridoxine (vitamin B6) and folate (vitamin B9) biosynthesis pathways in children. In contrast, the gut microbiome of adults showed higher abundances of carbohydrate metabolism pathways, beta-lactam resistance, thiamine (vitamin B1) and pantothenic (vitamin B5) biosynthesis pathways. A predominance of catabolic pathways in children (valine, leucine and isoleucine degradation) as compared to biosynthetic pathways in adults (valine, leucine and isoleucine biosynthesis) suggests a functional microbiome switch to the latter in adult individuals. Overall, we identified compositional and functional differences in gut microbiome between children and adults in a population-based setting. These microbiome profiles can serve as reference for future studies on specific human disease susceptibility in childhood, adulthood and specific diseased populations.
Anti-tissue transglutaminase antibodies (TG2A) positivity and the risk of vitamin D deficiency among children - a cross-sectional study in the generation R cohort
Background Suboptimal vitamin D status is common in people with celiac disease (CeD), a disease that can be characterized by the presence of serum anti-tissue transglutaminase antibodies (TG2A) (i.e., TG2A positivity). To date, it remains unclear whether childhood TG2A positivity is associated with vitamin D status and how this potential association can be explained by other factors than malabsorption only, since vitamin D is mainly derived from exposure to sunlight. The aim of our study was therefore to assess whether childhood TG2A positivity is associated with vitamin D concentrations, and if so, to what extent this association can be explained by sociodemographic and lifestyle factors. Methods This cross-sectional study was embedded in the Generation R Study, a population-based prospective cohort. We measured serum anti-tissue transglutaminase antibodies (TG2A) concentrations and serum 25-hydroxyvitamin D (25(OH)D) concentrations of 3994 children (median age of 5.9 years). Children with serum TG2A concentrations ≥ 7 U/mL were considered TG2A positive. To examine associations between TG2A positivity and 25(OH)D concentrations, we performed multivariable linear regression, adjusted for sociodemographic and lifestyle factors. Results Vitamin D deficiency (serum 25(OH)D < 50 nmol/L) was found in 17 out of 54 TG2A positive children (31.5%), as compared to 1182 out of 3940 TG2A negative children (30.0%). Furthermore, TG2A positivity was not associated with 25(OH)D concentrations (β -2.20; 95% CI -9.72;5.33 for TG2A positive vs. TG2A negative children), and this did not change after adjustment for confounders (β -1.73, 95% CI -8.31;4.85). Conclusions Our findings suggest there is no association between TG2A positivity and suboptimal vitamin D status in the general pediatric population. However, the overall prevalence of vitamin D deficiency in both populations was high, suggesting that screening for vitamin D deficiency among children, regardless of TG2A positivity, would be beneficial to ensure early dietary intervention if needed.
Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder
Yuen et al . developed a cloud-based database with 5,205 whole genomes from families with autism spectrum disorder (ASD). They identified 18 new candidate ASD-risk genes and approximately 100 risk genes and copy-number loci, which account for 11% of the cases. They also found that individuals bearing mutations in ASD-risk genes had lower adaptive ability. We are performing whole-genome sequencing of families with autism spectrum disorder (ASD) to build a resource (MSSNG) for subcategorizing the phenotypes and underlying genetic factors involved. Here we report sequencing of 5,205 samples from families with ASD, accompanied by clinical information, creating a database accessible on a cloud platform and through a controlled-access internet portal. We found an average of 73.8 de novo single nucleotide variants and 12.6 de novo insertions and deletions or copy number variations per ASD subject. We identified 18 new candidate ASD-risk genes and found that participants bearing mutations in susceptibility genes had significantly lower adaptive ability ( P = 6 × 10 −4 ). In 294 of 2,620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried copy number variations and/or chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD.
Low-Frequency Nevirapine (NVP)-Resistant HIV-1 Variants Are Not Associated With Failure of Antiretroviral Therapy in Women Without Prior Exposure to Single-Dose NVP
Background. Low-frequency nevirapine (NVP)-resistant variants have been associated with virologie failure (VF) of initial NVP-based combination antiretroviral therapy (cART) in women with prior exposure to single-dose NVP (sdNVP). We investigated whether a similar association exists in women without prior sdNVP exposure. Methods. Pre-cART plasma was analyzed by alíele-specific polymerase chain reaction to quantify NVPresistant mutants in human immunodeficiency virus-infected African women without prior sdNVP who were starting first-line NVP-based cART in the OCTANE/A5208 trial 2. Associations between NVP-resistant mutants and VF or death were determined and compared with published results from women participating in the OCTANE/A5208 trial 1 who had taken sdNVP and initiated NVP-based cART. Results. Pre-cART NVP-resistant variants were detected in 18% (39/219) of women without prior sdNVP exposure, compared to 45% (51/114) with prior sdNVP exposure (P < .001). Among women without prior sdNVP exposure, 8 of 39 (21%) with NVP-resistant variants experienced VF or death vs 31 of 180 (17%) without such variants (P = .65); this compares with 21 of 51 (41%) vs 9 of 63 (14%) among women with prior exposure (P = .001). Conclusions. The risk of VF on NVP-based cART from NVP-resistant variants differs between sdNVP-exposed and -unexposed women. This difference may be driven by drug-resistance mutations emerging after sdNVP exposure that are linked on the same viral genome.
ClinGen and Genetic Testing
To the Editor: Easton et al. (June 4 issue) 1 highlight the challenges that genomic laboratories face when classifying rare variants. Predictions of cancer risk are typically extrapolated from burden tests, under the assumption of equal pathogenicity for every variant, which may not always be accurate. For example, CDH1 C-terminal truncating variants are predicted to retain partial function, and therefore cancer risk associated with these variants should be evaluated carefully. 2 , 3 The authors argue that although it would be ideal to have specific evidence for every variant, most are rare, making the task “infeasible.” 1 Although it is difficult to collect enough . . .
Changes in HIV-1 Subtypes B and C Genital Tract RNA in Women and Men After Initiation of Antiretroviral Therapy
Background. Combination antiretroviral therapy (cART) reduces genital tract human immunodeficiency virus type 1 (HIV-1) load and reduces the risk of sexual transmission, but little is known about the efficacy of cART for decreasing genital tract viral load (GTVL) and differences in sex or HIV-1 subtype. Methods. HIV-1 RNA from blood plasma, seminal plasma, or cervical wicks was quantified at baseline and at weeks 48 and 96 after entry in a randomized clinical trial of 3 cART regimens. Results. One hundred fifty-eight men and 170 women from 7 countries were studied (men: 55% subtype B and 45% subtype C; women: 24% subtype B and 76% subtype C). Despite similar baseline CD4+ cell counts and blood plasma viral loads, women with subtype C had the highest GTVL (median, 5.1 log10 copies/mL) compared to women with subtype B and men with subtype C or B (4.0, 4.0, and 3.8 log10 copies/mL, respectively; P < .001). The proportion of participants with a GTVL below the lower limit of quantification (LLQ) at week 48 (90%) and week 96 (90%) was increased compared to baseline (16%; P < .001 at both times). Women were significantly less likely to have GTVL below the LLQ compared to men (84% vs 94% at week 48, P = .006; 84% vs 97% at week 96, P = .002), despite a more sensitive assay for seminal plasma than for cervical wicks. No difference in GTVL response across the 3 cART regimens was detected. Conclusions. The female genital tract may serve as a reservoir of persistent HIV-1 replication during cART and affect the use of cART to prevent sexual and perinatal transmission of HIV-1.
Atypical autism in a boy with double duplication of 22q11.2: implications of increasing dosage
Duplication of chromosome 22q11.2 (LCR A-D) has been reported at higher frequencies in clinical samples than the general population, but phenotypes vary widely. Triplication (4 copies) is rare, but studying the associated phenotype may provide insight into dosage-sensitivity of the genes in this chromosomal interval. We describe a proband with a triplication, specifically a “double duplication” (two copies per chromosome) of the 22q11.2 region, while his parents and two siblings each have a single duplication (3 copies). The proband had a heart malformation, dysmorphic features, and learning and socialization deficits, whereas the other family members did not. This family illustrates that while duplication of the 22q11.2 may not be sufficient to cause clinically significant neurodevelopmental or health-related phenotypes, triplication of the same region may result in a phenotype characterized by a mild neurodevelopmental disorder, facial dysmorphism, and possibly cardiac anomalies.