Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
76
result(s) for
"Betti, Federico"
Sort by:
Exogenous miRNAs induce post-transcriptional gene silencing in plants
2021
Plants seem to take up exogenous RNA that was artificially designed to target specific genes, followed by activation of the RNA interference (RNAi) machinery. It is, however, not known whether plants use RNAs themselves as signalling molecules in plant-to-plant communication, other than evidence that an exchange of small RNAs occurs between parasitic plants and their hosts. Exogenous RNAs from the environment, if taken up by some living organisms, can indeed induce RNAi. This phenomenon has been observed in nematodes and insects, and host
Arabidopsis
cells secrete exosome-like extracellular vesicles to deliver plant small RNAs into
Botrytis cinerea
. Here we show that micro-RNAs (miRNAs) produced by plants act as signalling molecules affecting gene expression in other, nearby plants. Exogenous miRNAs, such as
miR156
and
miR399
, trigger RNAi via a mechanism requiring both AGO1 and RDR6. This emphasizes that the production of secondary small interfering RNAs is required. This evidence highlights the existence of a mechanism in which miRNAs represent signalling molecules that enable communication between plants.
This study shows that miRNAs produced by plants act as signalling molecules that affect gene expression in nearby plants. This RNAi induced by exogenous miRNAs enables communication between plants and requires the production of secondary siRNAs.
Journal Article
Megabenthic communities of the Ligurian deep continental shelf and shelf break (NW Mediterranean Sea)
by
Dominguez-Carrió, Carlos
,
Enrichetti, Francesco
,
Toma, Margherita
in
Animals
,
Anthozoa - classification
,
Anthozoa - growth & development
2019
The Ligurian Sea is one of the most studied Mediterranean basins. Since the beginning of the last century, many research expeditions have characterized its benthic and pelagic fauna through scuba diving and trawl surveys. However, a large knowledge gap exists about the composition of benthic communities extending into the so-called mesophotic or twilight depth range, currently under intense pressure from commercial and recreational fishing. A series of visual surveys, carried out by means of remotely operated vehicles between 2012 and 2018, were conducted along the Ligurian deep continental shelf and shelf break, between 30 and 210 m depth, in order to characterize the main benthic biocoenoses dwelling at this depth range and to determine the most relevant environmental factors that explain their spatial distribution. Deep circalittoral communities of the Ligurian Sea were represented by a mixture of species belonging to the deepest extension of shallow-water habitats and deep circalittoral ones. Twelve major biocoenoses were identified, each one characterized by specific preferences in depth range, substrate type and seabed slope. Those biocoenoses included gorgonian and hydrozoan forests, dense keratose sponge grounds, Dendrophyllia cornigera gardens, bryozoan beds and soft-bottom meadows of sabellid polychaetes and soft-corals. Other less common aggregations included six forests of black corals and two populations of Paramuricea macrospina. A georeferenced database has been created in order to provide information to managers and stakeholders about the location of the identified communities and high-diversity areas, aiming to facilitate sustainable long-term conservation of the Ligurian benthic ecosystem.
Journal Article
The Box Crab Calappa hepatica as a Nuclear Species for the Opportunistic Foraging Behaviour of the Flowery Flounder, Bothus mancus, in the Indo-Pacific
2024
Some predatory fishes may exhibit opportunistic feeding behaviour by exploiting potential prey that is distracted, displaced, or exposed by the activities of a third party that acts as a ‘nuclear’ species. Other fishes mostly perform the role of ‘nuclear’ species, but benthic invertebrates, such as octopuses, have also been reported. Crabs are rarely observed in this role, with only a few records from the tropical Atlantic Ocean. Here, we report the temporary association between two specimens of the flowery flounder, Bothus mancus (family Bothidae), and a box crab, Calappa hepatica (family Calappidae), from the Philippines, representing the first record of a crab–fish feeding association in the Indo-Pacific region.
Journal Article
The Red Coral Community in the Messina Strait: New Findings from the 1700s Lazzaro Spallanzani Collection
2023
The precious red coral (Corallium rubrum L.) represents one of the most fascinating marine species of the Mediterranean Sea. Several samples, including red coral together with its accompanying species, were found in the zoological collection of the Italian pioneer biologist Lazzaro Spallanzani (1729–1799), collected in the Messina Strait during his voyage in Sicily (1788). The study of these samples allowed the inclusion of numerous additional species in the traditional red coral facies as the large oyster Neopycnodonte cochlear, the giant barnacle Pachylasma giganteum, the mesophotic scleractinian Caryophyllia (Caryophyllia) cyathus. These specimens proved to be very useful in describing the diversity of the paleo-community including red coral, shedding light on its formation processes. In particular, some specimens are composed of red coral rubble consolidated and cemented with other carbonatic remains Probably, these peculiar specimens have a similar origin to those of the Sciacca Banks already known from the Sicily Channel. In fact, the two areas are prone to intense seismic activity that periodically causes mass mortalities of red coral from nearby rocky reliefs and the formation of biogenic detritus, while the resulting chemical environment of the water and the sediments allows the consolidation of the carbonatic remains.
Journal Article
Possible Population Growth of Astrospartus mediterraneus (Risso, 1826) (Ophiuroidea, Gorgonocephalidae) in the Mediterranean Sea
2023
During the last decades, the number of observations of the basket star Astrospartus mediterraneus (Risso, 1826) in the Mediterranean Sea has significantly grown, thanks to SCUBA diver and ROV sightings, citizen reports, as well as particularly large catches by the artisanal fishery. Having been generally considered rare in many areas of the basin, such a long-term increase of records might assign to this basket star the putative role of a winner species in the context of climate changes. In the present study, we combined the overall literature information with the data available for the Ligurian Sea collected during extensive ROV campaigns conducted between 2012 and 2022 at a depth ranging from 20 to 123 m, to better understand the distribution and abundance of this species. The basket star was observed in almost the whole explored bathymetric range living on gorgonians (Eunicella cavolini, E. verrucosa, Paramuricea clavata, and Leptogorgia sarmentosa) and massive sponges (Aplysina cavernicola, Sarcotragus foetidus, Spongia lamella, and Axinella polypoides). In the considered period, the number of recorded specimens did not show a clear trend, but differences emerged over years and months. These variations were strongly correlated with rainfall amounts that, in oligotrophic waters, such as those of the Ligurian Sea, represent an important input of organic matter for these passive filter feeders, especially in the summertime.
Journal Article
The cold-water coral province of the eastern Ligurian Sea (NW Mediterranean Sea): historical and novel evidences
2023
Several bathyal cold-water coral provinces, characterized by a lush growth of habitat-forming scleractinians, have been recognized in the Mediterranean Sea. However, the search for this biogenic habitat only marginally targeted the Italian coast of the Ligurian Sea (NW Mediterranean basin) despite historical and a few recent local studies in the region reporting the presence of corals. This study used bathymetry maps, side-scan sonar profiles, historical charts, and trawling routes to identify sites that could potentially host coral habitats in the eastern sector of the Ligurian Sea. Remotely operated vehicle video footage from various projects (2015-2021, 20 dives) was then used to characterize four sub-areas (Genoa Plateau, Portofino, Deiva Marina, and Monterosso) where corals were detected between 450 m and 750 m depth. Radiocarbon dating was used to trace back the geological history of the coral structures. A small coral mound, impacted by trawling activities, was found on the Genoa Plateau, while four massive coral structures were found in the other sub-areas, mainly located in a morphologically complex and highly energetic canyon region. High levels of megafaunal biodiversity, including rarely reported alcyonaceans as Placogorgia coronata , were observed together with moderate fishing impact. Overall, the identified coral areas potentially account for 9 km 2 of both subfossil mounds (as old as 13300 years BP), dominated by Desmophyllum pertusum , and living reefs, dominated by Madrepora oculata , the latter representing up to 23% of the substrate coverage. The few living colonies of D. pertusum in the area represent the first documented records for the Ligurian Sea. These data support the presence of a distinct eastern Ligurian cold-water coral province.
Journal Article
Variation in the Health Status of the Mediterranean Gorgonian Forests: The Synergistic Effect of Marine Heat Waves and Fishing Activity
by
Canessa, Martina
,
Enrichetti, Francesco
,
Toma, Margherita
in
anthropic impact
,
Body height
,
Coasts
2024
Over the past thirty years, the red gorgonian Paramuricea clavata in the Mediterranean Sea has faced increasing threats, including heat waves and human activities such as artisanal and recreational fishing. Epibiosis on damaged gorgonian colonies is generally used as an indirect indication of stressed conditions. The density and height of P. clavata and the percentage of colonies affected by epibiosis and entangled in lost fishing gear were monitored to investigate the phenomenon and its trend over time in the Ligurian Sea. Analyses were based on transects collected during ROV campaigns between 2015 and 2022 at depths of 33–90 m. A strong correlation was observed between fishing efforts in the study area and the level of epibiosis. Maximal percentages of colonies affected by epibiosis and entanglement were recorded at depths of 50–70 m. Temporally, marine heat waves before 2019 were identified as the primary cause of damage to P. clavata. The decrease in epibiosis percentages after 2019, despite the 2022 heat wave, may be due to a quick recovery ability of the populations and a reduction in fishing activities during the COVID-19 lockdown in 2020. Long-term monitoring programmes are essential to understand the changes in marine benthic communities exposed to different stressors.
Journal Article
The Portofino Promontory: 200 Years of History of Marine Biology
by
Morri, Carla
,
Relini, Giulio
,
Mariotti, Mauro Giorgio
in
19th century
,
Aquatic animals
,
Aquatic plants
2024
This paper outlines the history of scientific research developed in the Portofino Promontory, located in the centre of the Ligurian Sea. The chronicles span over two centuries, from the late 18th century to the present day. Portofino is now recognised as one of the best-known areas in the world regarding marine biological communities and their temporal dynamics, particularly in relation to current climate changes. In addition, since 1999, with the establishment of the Marine Protected Area, significant research related to marine environment conservation has developed in Portofino. The role of the University of Genoa, the Natural History Museum, other important institutions, and the researchers involved in the Portofino area has been outlined.
Journal Article
Feeding of Aulacomya atra Under Different Organic Matter Sources (Autochthonous and Allochthonous) in a Chilean Patagonia Fjord Ecosystem
by
Coppari, Martina
,
Bavestrello, Giorgio
,
Betti, Federico
in
Aulacomya atra
,
autochthonous and allochthonous food
,
ingestion rate
2021
Aulacomya atra is an active suspension feeder, spatially dominant in the shallow-water hard-bottom benthic communities of the Chilean Patagonia fjords. In this region, the vertical flux of autochthonous organic matter (OM) reaching the benthos is augmented by allochthonous OM both from a terrestrial origin and from intensive salmon farming. This mixed pool of OM represents a potential source of food for a variety of benthic consumers, but to date little is known about the degree of utilization of these materials by filter feeders organisms. In this context, feeding experiments on A. atra in Puyuhuapi Fjord, Chilean Patagonia, were conducted during summer and winter 2018–2019. These experiments were designed to determine ingestion rates (IR) of A. atra fed with autochthonous (bacterial and microplanktonic community) and allochthonous (salmon food pellet) OM. Additionally, samples of A. atra tissues and suspended particulate organic matter (SPOM) were taken from the study area for stable isotope analysis. Data from laboratory experiments indicated that A. atra can feed on both autochthonous and allochthonous OM, but higher IR were detected in individuals fed with salmon food pellets. Because the IR is sensitive to food particle density rather than specific type of food, diet preferences of A. atra in feeding experiments could not be determined. Stable isotope analyses indicate that A. atra in natural environment preferentially exploits food with an isotopic signal corresponding to autochthonous OM, highlighting the primary role of phytoplankton carbon in their diet. Extensive utilization of terrestrially derived OM is therefore unlikely, although utilization of OM derived from salmon farming is not precluded because of the overlap in isotopic signal between food pellets and marine plankton.
Journal Article
Project “Biodiversity MARE Tricase”: A Species Inventory of the Coastal Area of Southeastern Salento (Ionian Sea, Italy)
2022
Biodiversity is a broad concept that encompasses the diversity of nature, from the genetic to the habitat scale, and ensures the proper functioning of ecosystems. The Mediterranean Sea, one of the world’s most biodiverse marine basins, faces major threats, such as overexploitation of resources, pollution and climate change. Here we provide the first multi-taxa inventory of marine organisms and coastal terrestrial flora recorded in southeastern Salento (Ionian Sea, Italy), realized during the project “Biodiversity MARE Tricase”, which provided the first baseline of species living in the area. Sampling was carried out by SCUBA and free diving, fishing gears, and citizen science from 0 to 70 m. Overall, 697 taxa were found between March 2016 and October 2017, 94% of which were identified to the species level. Of these, 19 taxa represented new records for the Ionian Sea (36 additional new records had been reported in previous publications on specific groups, namely Porifera and Mollusca Heterobranchia), and two findings represented the easternmost records in the Mediterranean Sea (Helicosalpa virgula and Lampea pancerina). For eight other taxa, our findings represented the only locality in the Ionian Sea, besides the Straits of Messina. In addition to the species list, phenological events (e.g., blooms, presence of reproductive traits and behaviour) were also reported, with a focus on gelatinous plankton. Our results reveal that even for a relatively well-known area, current biodiversity knowledge may still be limited, and targeted investigations are needed to fill the gaps. Further research is needed to understand the distribution and temporal trends of Mediterranean biodiversity and to provide baseline data to identify ongoing and future changes.
Journal Article