Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Beves, Jonathon E."
Sort by:
Electrochemical Switching of First-Generation Donor-Acceptor Stenhouse Adducts (DASAs): An Alternative Stimulus for Triene Cyclisation
Donor-acceptor Stenhouse adducts (DASAs) are a photo-switch class that undergoes triene cyclisation in response to visible light. Herein, electrochemical oxidation is demonstrated as an effective alternative stimulus for the triene cyclisation commonly associated with photo-switching.
A synthetic molecular pentafoil knot
Knots are being discovered with increasing frequency in both biological and synthetic macromolecules and have been fundamental topological targets for chemical synthesis for the past two decades. Here, we report on the synthesis of the most complex non-DNA molecular knot prepared to date: the self-assembly of five bis-aldehyde and five bis-amine building blocks about five metal cations and one chloride anion to form a 160-atom-loop molecular pentafoil knot (five crossing points). The structure and topology of the knot is established by NMR spectroscopy, mass spectrometry and X-ray crystallography, revealing a symmetrical closed-loop double helicate with the chloride anion held at the centre of the pentafoil knot by ten CH···Cl – hydrogen bonds. The one-pot self-assembly reaction features an exceptional number of different design elements—some well precedented and others less well known within the context of directing the formation of (supra)molecular species. We anticipate that the strategies and tactics used here can be applied to the rational synthesis of other higher-order interlocked molecular architectures. The most complex non-DNA molecular knot prepared so far is self-assembled around a chloride anion from five metal cations, five bis-aldehyde and five bis-amine building blocks, in a one-pot reaction. The X-ray crystal structure of the 160-atom-loop pentafoil knot reveals a symmetrical closed-loop double helicate with a chloride anion held at its centre by ten CH···Cl − hydrogen bonds.
Magnetic fields reveal signatures of triplet-pair multi-exciton photoluminescence in singlet fission
The photophysical processes of singlet fission and triplet fusion have numerous emerging applications. They involve the separation of a photo-generated singlet exciton into two dark triplet excitons and the fusion of two dark triplet excitons into an emissive singlet exciton, respectively. The role of the excimer state and the nature of the triplet-pair state in these processes have been a matter of contention. Here we analyse the room temperature time-resolved emission of a neat liquid singlet fission chromophore and show that it exhibits three spectral components: two that correspond to the bright singlet and excimer states and a third component that becomes more prominent during triplet fusion. This spectrum is enhanced by magnetic fields, confirming its origins in the recombination of weakly coupled triplet pairs. It is thus attributed to a strongly coupled triplet pair state. These observations unite the view that there is an emissive intermediate in singlet fission and triplet fusion, distinct from the broad, unstructured excimer emission. Singlet fission produces two molecular excitations from one photon and has the potential to boost solar cell efficiencies. Now it has been shown that magnetic fields can reveal the spectral signatures of the multi-excitonic intermediates in this process.