Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9
result(s) for
"Bevini, Mirko"
Sort by:
Soft tissue prediction in orthognathic surgery: Improving accuracy by means of anatomical details
by
Bevini, Mirko
,
Ruggiero, Federica
,
Dunaway, David
in
Cephalometry - methods
,
Complications and side effects
,
Evaluation
2023
Three-dimensional virtual simulation of orthognathic surgery is now a well-established method in maxillo-facial surgery. The commercial software packages are still burdened by a consistent imprecision on soft tissue predictions. In this study, the authors produced an anatomically detailed patient specific numerical model for simulation of soft tissue changes in orthognathic surgery. Eight patients were prospectively enrolled. Each patient underwent CBCT and planar x-rays prior to surgery and in addition received an MRI scan. Postoperative soft-tissue change was simulated using Finite Element Modeling (FEM) relying on a patient-specific 3D models generated combining data from preoperative CBCT (hard tissue) scans and MRI scans (muscles and skin). An initial simulation was performed assuming that all the muscles and the other soft tissue had the same material properties (Homogeneous Model). This model was compared with the postoperative CBCT 3D simulation for validation purpose. Design of experiments (DoE) was used to assess the effect of the presence of the muscles considered and of their variation in stiffness. The effect of single muscles was evaluated in specific areas of the midface. The quantitative distance error between the homogeneous model and actual patient surfaces for the midface area was 0.55 mm, standard deviation 2.9 mm. In our experience, including muscles in the numerical simulation of orthognathic surgery, brought an improvement in the quality of the simulation obtained.
Journal Article
Neural shape completion for personalized Maxillofacial surgery
by
Spezialetti, Riccardo
,
Bevini, Mirko
,
Lisanti, Giuseppe
in
3D deep learning
,
639/166
,
692/700/1421
2024
In this paper, we investigate the effectiveness of shape completion neural networks as clinical aids in maxillofacial surgery planning. We present a pipeline to apply shape completion networks to automatically reconstruct complete eumorphic 3D meshes starting from a partial input mesh, easily obtained from CT data routinely acquired for surgery planning. Most of the existing works introduced solutions to aid the design of implants for cranioplasty, i.e. all the defects are located in the neurocranium. In this work, we focus on reconstructing defects localized on both neurocranium and splanchnocranium. To this end, we introduce a new dataset, specifically designed for this task, derived from publicly available CT scans and subjected to a comprehensive pre-processing procedure. All the scans in the dataset have been manually cleaned and aligned to a common reference system. In addition, we devised a pre-processing stage to automatically extract point clouds from the scans and enrich them with virtual defects. We experimentally compare several state-of-the-art point cloud completion networks and identify the two most promising models. Finally, expert surgeons evaluated the best-performing network on a clinical case. Our results show how casting the creation of personalized implants as a problem of shape completion is a promising approach for automatizing this complex task.
Journal Article
Validation of a patient-specific system for mandible-first bimaxillary surgery: ramus and implant positioning precision assessment and guide design comparison
by
Rucci, Paola
,
Bevini, Mirko
,
Bianchi, Alberto
in
639/166/985
,
692/700/1421/2025
,
692/700/1421/2770
2020
In orthognathic surgery, the use of patient-specific osteosynthesis devices is a novel approach used to transfer the virtual surgical plan to the patient. The aim of this study is to analyse the quality of mandibular anatomy reproduction using a mandible-first mandibular-PSI guided procedure on 22 patients. Three different positioning guide designs were compared in terms of osteosynthesis plate positioning and mandibular anatomical outcome. PSIs and positioning guides were designed according to virtual surgical plan and 3D printed using biocompatible materials. A CBCT scan was performed 1 month after surgery and postoperative mandibular models were segmented for comparison against the surgical plan. A precision comparison was carried out among the three groups. Correlations between obtained rami and plates discrepancies and between planned rami displacements and obtained rami discrepancies were calculated. Intraoperatively, all PSIs were successfully applied. The procedure was found to be accurate in planned mandibular anatomy reproduction. Different guide designs did not differ in mandibular outcome precision. Plate positional discrepancies influenced the corresponding ramus position, mainly in roll angle and vertical translation. Ramus planned displacement was found to be a further potential source of inaccuracy, possibly due to osteosynthesis surface interference.
Journal Article
Three-dimensional cephalometric outcome predictability of virtual orthodontic-surgical planning in surgery-first approach
2022
ObjectivesThe aim of this study is to introduce a novel 3D cephalometric analysis (3DCA) and to validate its use in evaluating the reproducibility of virtual orthodontic-surgical planning (VOSP) in surgery-first approach (SF) comparing VOSP and post-operative outcome (PostOp). MethodsThe cohort of nineteen patients underwent bimaxillary orthognathic surgery following the VOSP designed in SimPlant O&O software by processing cone-beam computed tomography (CBCT) scans and intraoral digital scanning of the dental arches. Said records were re-acquired once the post-operative orthodontic treatment was completed. The 3DCA was performed by three expert operators on VOSP and PostOp 3D models. Descriptive statistics of 3DCA measures were evaluated, and outcomes were compared via Wilcoxon test. ResultsIn the comparison between cephalometric outcomes against planned ones, the following values showed significant differences: Wits Index, which suggests a tendency towards skeletal class III in PostOp (p = 0.033); decreased PFH/AFH ratio (p = 0.010); decreased upper incisors inclination (p < 0.001); and increased OVJ (p = 0.001). However not significant (p = 0.053), a tendency towards maxillary retroposition was found in PostOp (A/McNamara VOSP: 5.05 ± 2.64 mm; PostOp: 4.1 ± 2.6 mm). On average, however, when McNamara’s plane was considered as reference, a tendency to biprotrusion was found. Upper incisal protrusion was greater in PostOp as an orthodontic compensation for residual maxillary retrusion (VOSP: 5.68 ± 2.56 mm; PostOp: 6.53 ± 2.63 mm; p = 0.084). Finally, the frontal symmetry in relation to the median sagittal plane decreased in craniocaudal direction.LimitationsA potential limit of studies making use of closest point distance analysis is represented by the complexity that surgeons and orthodontists face in applying this three-dimensional evaluation of SF accuracy/predictability to everyday clinical practice and diagnosis. Also, heterogeneity and limited sample size may impact the results of the study comparison.ConclusionsThe presented 3DCA offers a valid aid in performing VOSP and analysing orthognathic surgery outcomes, especially in SF. Thanks to the cephalometric analysis, we found that surgery-first approach outcome unpredictability is mainly tied to the sagittal positioning of the maxilla and that the transverse symmetry is progressively less predictable in a craniocaudal direction.
Journal Article
Augmented Reality to Assist in the Diagnosis of Temporomandibular Joint Alterations
by
Badiali, Giovanni
,
Bevini, Mirko
,
Marcelli, Emanuela
in
Application
,
Augmentation
,
Augmented reality
2025
Augmented Reality (AR) is an increasingly prominent technology with diverse applications across various surgical disciplines. This study aims to develop and assess the feasibility of a novel AR application intended to aid surgeons in the clinical assessment of temporomandibular joint (TMJ) alterations necessitating surgical intervention. The application employs a multi-modality tracking approach, combining both marker-less and marker-based tracking techniques to concurrently track the fixed portion of the joint and the movable mandible involved in TMJ. For the marker-based tracking both a planar marker with a binary QR-code pattern and a cuboid marker that contains a unique QR-code pattern on each face were tested and compared. The AR application was implemented for the HoloLens 2 head-mounted display and validated on a healthy volunteer performing the TMJ task, i.e. the opening and closing of the mouth. During the task, video recordings from the HoloLens cameras captured the horizontal and vertical excursions of the jaw movements (TMJ movements) using virtual markers anchored to the AR-displayed virtual anatomies. For validation, the video-recorded TMJ movements during AR viewing were compared with standard kinesiographic acquisitions. The findings demonstrated the consistency between the AR-derived trajectories and the kinesiography curves, especially when using the cubic Multi Target tracker to follow the moving mandible. Finally, the AR application was experienced on a patient and it was extremely useful for the surgeon to diagnose alterations in the normal kinematics of the TMJ. Future efforts should be addressed to minimize the bulkiness of the tracker and provide additional visual cues for surgeons.
Journal Article
Preclinical Application of Augmented Reality in Pediatric Craniofacial Surgery: An Accuracy Study
by
Bevini, Mirko
,
Ruggiero, Federica
,
Marcelli, Emanuela
in
Accuracy
,
Augmented Reality
,
Birth defects
2023
Background: Augmented reality (AR) allows the overlapping and integration of virtual information with the real environment. The camera of the AR device reads the object and integrates the virtual data. It has been widely applied to medical and surgical sciences in recent years and has the potential to enhance intraoperative navigation. Materials and methods: In this study, the authors aim to assess the accuracy of AR guidance when using the commercial HoloLens 2 head-mounted display (HMD) in pediatric craniofacial surgery. The Authors selected fronto-orbital remodeling (FOR) as the procedure to test (specifically, frontal osteotomy and nasal osteotomy were considered). Six people (three surgeons and three engineers) were recruited to perform the osteotomies on a 3D printed stereolithographic model under the guidance of AR. By means of calibrated CAD/CAM cutting guides with different grooves, the authors measured the accuracy of the osteotomies that were performed. We tested accuracy levels of ±1.5 mm, ±1 mm, and ±0.5 mm. Results: With the HoloLens 2, the majority of the individuals involved were able to successfully trace the trajectories of the frontal and nasal osteotomies with an accuracy level of ±1.5 mm. Additionally, 80% were able to achieve an accuracy level of ±1 mm when performing a nasal osteotomy, and 52% were able to achieve an accuracy level of ±1 mm when performing a frontal osteotomy, while 61% were able to achieve an accuracy level of ±0.5 mm when performing a nasal osteotomy, and 33% were able to achieve an accuracy level of ±0.5 mm when performing a frontal osteotomy. Conclusions: despite this being an in vitro study, the authors reported encouraging results for the prospective use of AR on actual patients.
Journal Article
Accuracy Evaluation of an Alternative Approach for a CAD-AM Mandibular Reconstruction with a Fibular Free Flap via a Novel Hybrid Roto-Translational and Surface Comparison Analysis
by
Vitali, Francesco
,
Ceccariglia, Francesco
,
Badiali, Giovanni
in
Accuracy
,
Computer-aided design
,
Computer-aided manufacturing
2023
Although the fibula free flap represents the gold standard for mandibular reconstructions, when implanted as a single barrel, this flap does not have the cross-sectional requisites to restore the native mandibular height, which is in turn required for the implant-supported dental rehabilitation of the patient. Our team has developed a design workflow that already considers the predicted dental rehabilitation, positioning the fibular free flap in the correct craniocaudal position to restore the native alveolar crest. The remaining height gap along the inferior mandibular margin is then filled by a patient-specific implant. The aim of this study is to evaluate the accuracy in transferring the planned mandibular anatomy resulting from said workflow on 10 patients by means of a new rigid body analysis method, derived from the evaluation of orthognathic surgery procedures. The analysis method has proved to be reliable and reproducible, and the results obtained show that the procedure already has satisfactory accuracy (4.6° mean total angular discrepancy, 2.7 mm total translational discrepancy, 1.04 mm mean neo-alveolar crest surface deviation), while also pointing out possible improvements to the virtual planning workflow.
Journal Article
PSI-Guided Mandible-First Orthognathic Surgery: Maxillo-Mandibular Position Accuracy and Vertical Dimension Adjustability
by
Bevini, Mirko
,
Bianchi, Alberto
,
Ruggiero, Federica
in
Asymmetry
,
Bone implants
,
Computed tomography
2021
In orthognathic surgery, patient-specific osteosynthesis implants (PSIs) represent a novel approach for the reproduction of the virtual surgical planning on the patient. The aim of this study is to analyse the quality of maxillo-mandibular positioning using a hybrid mandible-first mandibular-PSI-guided procedure on twenty-two patients while the upper maxilla was fixed using manually bent stock titanium miniplates. The virtual surgical plan was used to design PSIs and positioning guides, which were then 3D printed using biocompatible materials. A Cone Beam Computed Tomography (CBCT) scan was performed one month after surgery and postoperative facial skeletal models were segmented for comparison against the surgical plan. A three-dimensional cephalometric analysis was carried out on both planned and obtained anatomies. A Spearman correlation matrix was computed on the calculated discrepancies in order to achieve a more comprehensive description of maxillo-mandibular displacement. Intraoperatively, all PSIs were successfully applied. The procedure was found to be accurate in planned maxillo-mandibular positioning reproduction, while maintaining a degree of flexibility to allow for aesthetics-based verticality correction in a pitch range between −5.31 and +1.79 mm. Such a correction did not significantly affect the achievement of planned frontal symmetry.
Journal Article
Existence of a Neutral-Impact Maxillo-Mandibular Displacement on Upper Airways Morphology
2021
Current scientific evidence on how orthognathic surgery affects the airways morphology remains contradictory. The aim of this study is to investigate the existence and extension of a neutral-impact interval of bony segments displacement on the upper airways morphology. Its upper boundary would behave as a skeletal displacement threshold differentiating minor and major jaw repositioning, with impact on the planning of the individual case. Pre- and post-operative cone beam computed tomographies (CBCTs) of 45 patients who underwent maxillo-mandibular advancement or maxillary advancement/mandibular setback were analysed by means of a semi-automated three-dimensional (3D) method; 3D models of skull and airways were produced, the latter divided into the three pharyngeal subregions. The correlation between skeletal displacement, stacked surface area and volume was investigated. The displacement threshold was identified by setting three ∆Area percentage variations. No significant difference in area and volume emerged from the comparison of the two surgical procedures with bone repositioning below the threshold (approximated to +5 mm). A threshold ranging from +4.8 to +7 mm was identified, varying in relation to the three ∆Area percentages considered. The ∆Area increased linearly above the threshold, while showing no consistency in the interval ranging from −5 mm to +5 mm.
Journal Article