Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
32
result(s) for
"Bewick, Adam J."
Sort by:
Widespread natural variation of DNA methylation within angiosperms
by
Bewick, Adam J.
,
Schmutz, Jeremy
,
Li, Qing
in
60 APPLIED LIFE SCIENCES
,
Angiosperms
,
Animal Genetics and Genomics
2016
Background
DNA methylation is an important feature of plant epigenomes, involved in the formation of heterochromatin and affecting gene expression. Extensive variation of DNA methylation patterns within a species has been uncovered from studies of natural variation. However, the extent to which DNA methylation varies between flowering plant species is still unclear. To understand the variation in genomic patterning of DNA methylation across flowering plant species, we compared single base resolution DNA methylomes of 34 diverse angiosperm species.
Results
By analyzing whole-genome bisulfite sequencing data in a phylogenetic context, it becomes clear that there is extensive variation throughout angiosperms in gene body DNA methylation, euchromatic silencing of transposons and repeats, as well as silencing of heterochromatic transposons. The Brassicaceae have reduced CHG methylation levels and also reduced or loss of CG gene body methylation. The Poaceae are characterized by a lack or reduction of heterochromatic CHH methylation and enrichment of CHH methylation in genic regions. Furthermore, low levels of CHH methylation are observed in a number of species, especially in clonally propagated species.
Conclusions
These results reveal the extent of variation in DNA methylation in angiosperms and show that DNA methylation patterns are broadly a reflection of the evolutionary and life histories of plant species.
Journal Article
Subgenome Dominance in an Interspecific Hybrid, Synthetic Allopolyploid, and a 140-Year-Old Naturally Established Neo-Allopolyploid Monkeyflower
by
Edger, Patrick P.
,
Bewick, Adam J.
,
Pires, J. Chris
in
Autosomal dominant inheritance
,
Bias
,
DNA methylation
2017
Recent studies have shown that one of the parental subgenomes in ancient polyploids is generally more dominant, having retained more genes and being more highly expressed, a phenomenon termed subgenome dominance. The genomic features that determine how quickly and which subgenome dominates within a newly formed polyploid remain poorly understood. To investigate the rate of emergence of subgenome dominance, we examined gene expression, gene methylation, and transposable element (TE) methylation in a natural, <140-year-old allopolyploid (Mimulus peregrinus), a resynthesized interspecies triploid hybrid (M. robertsii), a resynthesized allopolyploid (M. peregrinus), and progenitor species (M. guttatus and M. luteus). We show that subgenome expression dominance occurs instantly following the hybridization of divergent genomes and significantly increases over generations. Additionally, CHH methylation levels are reduced in regions near genes and within TEs in the first-generation hybrid, intermediate in the resynthesized allopolyploid, and are repatterned differently between the dominant and recessive subgenomes in the natural allopolyploid. Subgenome differences in levels of TE methylation mirror the increase in expression bias observed over the generations following hybridization. These findings provide important insights into genomic and epigenomic shock that occurs following hybridization and polyploid events and may also contribute to uncovering the mechanistic basis of heterosis and subgenome dominance.
Journal Article
The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants
by
Bewick, Adam J.
,
Rohr, Nicholas A.
,
Leebens-Mack, Jim
in
Algae
,
Amborella trichopoda
,
Angiosperms
2017
Background
The evolution of gene body methylation (gbM), its origins, and its functional consequences are poorly understood. By pairing the largest collection of transcriptomes (>1000) and methylomes (77) across Viridiplantae, we provide novel insights into the evolution of gbM and its relationship to CHROMOMETHYLASE (CMT) proteins.
Results
CMTs are evolutionary conserved DNA methyltransferases in Viridiplantae. Duplication events gave rise to what are now referred to as CMT1, 2 and 3. Independent losses of CMT1, 2, and 3 in eudicots, CMT2 and ZMET in monocots and monocots/commelinids, variation in copy number, and non-neutral evolution suggests overlapping or fluid functional evolution of this gene family. DNA methylation within genes is widespread and is found in all major taxonomic groups of Viridiplantae investigated. Genes enriched with methylated CGs (mCG) were also identified in species sister to angiosperms. The proportion of genes and DNA methylation patterns associated with gbM are restricted to angiosperms with a functional CMT3 or ortholog. However, mCG-enriched genes in the gymnosperm
Pinus taeda
shared some similarities with gbM genes in
Amborella trichopoda
. Additionally, gymnosperms and ferns share a CMT homolog closely related to CMT2 and 3. Hence, the dependency of gbM on a CMT most likely extends to all angiosperms and possibly gymnosperms and ferns.
Conclusions
The resulting gene family phylogeny of CMT transcripts from the most diverse sampling of plants to date redefines our understanding of CMT evolution and its evolutionary consequences on DNA methylation. Future, functional tests of homologous and paralogous CMTs will uncover novel roles and consequences to the epigenome.
Journal Article
On the origin and evolutionary consequences of gene body DNA methylation
by
Bewick, Adam J.
,
Lu, Zefu
,
Schmutz, Jeremy
in
Arabidopsis thaliana
,
Biological Sciences
,
Chromatin
2016
In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum. Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales.
Journal Article
Genome-Wide Reinforcement of DNA Methylation Occurs during Somatic Embryogenesis in Soybean
by
Bewick, Adam J.
,
Meyers, Blake C.
,
Daron, Josquin
in
Cells, Cultured
,
DNA Methylation - genetics
,
Epigenesis, Genetic
2019
Somatic embryogenesis is an important tissue culture technique that sometimes leads to phenotypic variation via genetic and/or epigenetic changes. To understand the genomic and epigenomic impacts of somatic embryogenesis, we characterized soybean (Glycine max) epigenomes sampled from embryos at 10 different stages ranging from 6 weeks to 13 years of continuous culture. We identified genome-wide increases in DNA methylation from cultured samples, especially at CHH sites. The hypermethylation almost exclusively occurred in regions previously possessing non-CG methylation and was accompanied by increases in the expression of genes encoding the RNA-directed DNA methylation (RdDM) machinery. The epigenomic changes were similar between somatic and zygotic embryogenesis. Following the initial global wave of hypermethylation, rare decay events of maintenance methylation were observed, and the extent of the decay increased with time in culture. These losses in DNA methylation were accompanied by downregulation of genes encoding the RdDM machinery and transcriptome reprogramming reminiscent of transcriptomes during late-stage seed development. These results reveal a process for reinforcing already silenced regions to maintain genome integrity during somatic embryogenesis over the short term, which eventually decays at certain loci over longer time scales.
Journal Article
Connectivity in gene coexpression networks negatively correlates with rates of molecular evolution in flowering plants
by
Masalia, Rishi R.
,
Bewick, Adam J.
,
Burke, John M.
in
Angiosperms
,
Arabidopsis thaliana
,
Arrays
2017
Gene coexpression networks are a useful tool for summarizing transcriptomic data and providing insight into patterns of gene regulation in a variety of species. Though there has been considerable interest in studying the evolution of network topology across species, less attention has been paid to the relationship between network position and patterns of molecular evolution. Here, we generated coexpression networks from publicly available expression data for seven flowering plant taxa (Arabidopsis thaliana, Glycine max, Oryza sativa, Populus spp., Solanum lycopersicum, Vitis spp., and Zea mays) to investigate the relationship between network position and rates of molecular evolution. We found a significant negative correlation between network connectivity and rates of molecular evolution, with more highly connected (i.e., \"hub\") genes having significantly lower nonsynonymous substitution rates and dN/dS ratios compared to less highly connected (i.e., \"peripheral\") genes across the taxa surveyed. These findings suggest that more centrally located hub genes are, on average, subject to higher levels of evolutionary constraint than are genes located on the periphery of gene coexpression networks. The consistency of this result across disparate taxa suggests that it holds for flowering plants in general, as opposed to being a species-specific phenomenon.
Journal Article
EVOLUTION OF THE CLOSELY RELATED, SEX-RELATED GENES DM-W AND DMRT1 IN AFRICAN CLAWED FROGS (XENOPUS)
2011
DM-W is a dominant, female-specific, regulator of sex determination in the African clawed frog Xenopus laevis. This gene is derived from partial duplication of DMRT1, a male-related autosomal gene. We set out to better understand sex determination in Xenopus by studying this pair of genes. We found that DM-W evolved in Xenopus after divergence from the sister genus Silurana but before divergence of X. laevis and X. clivii, and that DM-W arose from partial duplication of DMRT1β, which is one of the two DMRT1 paralogs in the tetraploid ancestor of Xenopus. Using the rate ratio of nonsynonymous to synonymous substitutions per site and multilocus polymorphism data, we show that DM-W evolved non-neutrally. By cloning paralogs and using a pyrosequencing assay, we also demonstrate that DMRT1 underwent phylogenetically biased pseudogenization after polyploidization, and that expression of this gene is regulated by mechanisms that vary through development. One explanation for these observations is that the expression domain of DMRT1β was marginalized, which would explain why this paralog is dispensable in Xenopus polyploids and why DM-W has a narrow expression domain. These findings illustrate how evolution of the genetic control of stable phenotypes is facilitated by redundancy, degeneration, and compartmentalized regulation.
Journal Article
Dnmt1 is essential for egg production and embryo viability in the large milkweed bug, Oncopeltus fasciatus
by
Bewick, Adam J.
,
Sanchez, Zachary
,
Mckinney, Elizabeth C.
in
Animal Genetics and Genomics
,
Animals
,
Bees
2019
Background
The function of cytosine (DNA) methylation in insects remains inconclusive due to a lack of mutant and/or genetic studies.
Results
Here, we provide evidence for the functional role of the maintenance DNA methyltransferase 1 (
Dnmt1
) in an insect using experimental manipulation. Through RNA interference (RNAi), we successfully posttranscriptionally knocked down
Dnmt1
in ovarian tissue of the hemipteran
Oncopeltus fasciatus
(the large milkweed bug). Individuals depleted for
Dnmt1
, and subsequently DNA methylation, failed to reproduce. Eggs were inviable and declined in number, and nuclei structure of follicular epithelium was aberrant. Erasure of DNA methylation from gene or transposon element bodies did not reveal a direct causal link to steady-state mRNA levels in somatic cells. These results reveal an important function of
Dnmt1
seemingly not contingent on directly controlling gene expression.
Conclusions
This study provides direct experimental evidence for a functional role of
Dnmt1
in egg production and embryo viability and uncovers a trivial role, if any, for DNA methylation in control of gene expression in
O. fasciatus
.
Journal Article
Evolutionary and Experimental Loss of Gene Body Methylation and Its Consequence to Gene Expression
by
Wendte, Jered M
,
Zhang, Yinwen
,
Schmitz, Robert J
in
DNA methylation
,
Gene expression
,
Genomes
2019
In flowering plants, gene body methylation (gbM) is associated with a subset of constitutively expressed genes. It has been proposed that gbM modulates gene expression. Here, we show that there are no consistent and direct differences to expression following the loss of gbM. By comparing expression of gbM genes in Arabidopsis thaliana accessions to orthologous genes in two Eutrema salsugineum genotypes, we identified both positive and negative expression differences associated with gbM loss. However, expression is largely unaffected by gbM loss in E. salsugineum. Expression differences between species were within the variation of expression observed within A. thaliana accessions that displayed variation in gbM. Furthermore, experimentally induced loss of gbM did not consistently lead to differences in expression compared to wild type. To date, there is no convincing data to support a direct causal link between the presence/absence of gbM and the modulation of expression in flowering plants.
Journal Article
Evolution of DNA Methylation across Insects
by
Schmitz, Robert J
,
Bewick, Adam J
,
Vogel, Kevin J
in
Biological evolution
,
Bisulfite
,
Deoxyribonucleic acid
2017
DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects.
Journal Article