Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
51 result(s) for "Bieber, Claudia"
Sort by:
What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change
Climate change is known to affect ecosystems globally, but our knowledge of its impact on large and widespread mammals, and possibly population-specific responses is still sparse. We investigated large-scale and long-term effects of climate change on local population dynamics using the wild boar (Sus scrofa L.) as a model species. Our results show that population increases across Europe are strongly associated with increasingly mild winters, yet with region-specific threshold temperatures for the onset of exponential growth. Additionally, we found that abundant availability of critical food resources, e.g. beech nuts, can outweigh the negative effects of cold winters on population growth of wild boar. Availability of beech nuts is highly variable and highest in years of beech mast which increased in frequency since 1980, according to our data. We conclude that climate change drives population growth of wild boar directly by relaxing the negative effect of cold winters on survival and reproduction, and indirectly by increasing food availability. However, region-specific responses need to be considered in order to fully understand a species' demographic response to climate change.
Classification of behaviour with low-frequency accelerometers in female wild boar
Accelerometers with low sampling rates (1 Hz) are commercially available as ear tags. While an automated and therefore undisturbed sampling of animal behaviour can be useful not only in behavioural studies but also in ecological or wildlife management studies, the usefulness of such ‘a low data collection rate for the prediction of behaviours was the key question addressed here. We classified the behaviour of female wild boar, kept under semi-natural conditions in a large outdoor enclosure, using acceleration data. Predictions were based on a machine learning algorithm, specifically a random forest model in the open software h2o. Remarkably, prediction of many behaviours was possible using ear-tag acceleration sensors that sampled data only at a low frequency. This measurement device was mainly used to minimise the potentially harmful effects caused by the repeated capture of wild animals to exchange batteries. Long battery life will also help to collect long-term accelerometer data and has the potential to explore seasonal and inter-annual trends. Foraging, lateral resting, sternal resting and lactating were identified well, scrubbing, standing and walking not reliably. Balanced accuracy depended on the behaviour type and ranged from 50% (walking) to 97% (lateral resting). Results show that static features of unfiltered acceleration data, as well as of gravitation and orientation filtered data, were used in the prediction of behaviour. The waveform of certain behaviours in the sampled frequency range played no important role. Certain positively identified behaviours, such as food intake and lactation, could be of interest for wildlife managers attempting to control population growth in this pest-species. We provide several R-scripts that allow the analysis of behavioural accelerometer data.
Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers
1. In terrestrial ecosystems many species show large population fluctuations caused by pulsed resources, such as mast seeding. A prime example of a mammal strongly affected by mast seeding of trees is the wild boar Sus scrofa, a species that has become a pest in many parts of the world. We investigated the population dynamics of wild boar to assist the development of effective management strategies for this species and possibly for other pulsed resource consumers. 2. We analysed published vital rates of wild boar using Leslie matrix projection models and elasticity analysis. Models were based on vital rates of animals under poor, intermediate and good environmental conditions, which represent combinations of differences in food availability (particularly mast of beech Fagus sylvatica and/or oak Quercus spp.) and winter climate. 3. Interestingly, we observed a crossover in the ranking of elasticities (e; the relative impact of each vital rate on population growth rate λ) when comparing different conditions. While the elasticity of λ to adult survival was highest in poor environments [e(Padult) = 0·36, e(Pjuvenile) = 0·22], the elasticity of λ to juvenile survival was highest under good conditions [e(Padult) = 0·16, e(Pjuvenile) = 0·28]. Thus juvenile survival becomes increasingly important for population growth as habitat conditions improve. 4. Our analysis of empirical beech mast records gave some indication of an increase of full masts over the last few decades. Modelling different beech mast scenarios showed that an increase in full mast frequency will lead to a rapid increase in λ. The availability of alternative food resources, namely agricultural crops, may also contribute to an expansion of wild boar populations. 5. Synthesis and applications. We suggest that, whenever possible, management strategies should be based on separate elasticity analyses for different environmental conditions, especially for species dependent on pulsed resources. For wild boar we suggest the following principal management strategies to stop further population increases: (i) supplementary feeding should be strictly avoided; (ii) under good environmental conditions, reducing juvenile survival will have the largest effect on λ, whereas strong hunting pressure on adult females will lead to most effective population control in years with poor conditions.
Effects of aging on timing of hibernation and reproduction
Small hibernators are long-lived for their size because seasonal dormancy greatly reduces predation risk. Thus, within a year, hibernators switch between states of contrasting mortality risk (active season versus hibernation), making them interesting species for testing the predictions of life-history theory. Accordingly, we hypothesized that, with advancing age and hence diminishing reproductive potential, hibernators should increasingly accept the higher predation risk associated with activity to increase the likelihood of current reproductive success. For edible dormice ( Glis glis ) we show that age strongly affects hibernation/activity patterns, and that this occurs via two pathways: ( i ) with increasing age, dormice are more likely to reproduce, which delays the onset of hibernation, and ( ii ) age directly advances emergence from hibernation in spring. We conclude that hibernation has to be viewed not merely as an energy saving strategy under harsh climatic conditions, but as an age-affected life-history trait that is flexibly used to maximize fitness.
Atypical for northern ungulates, energy metabolism is lowest during summer in female wild boars (Sus scrofa)
Typically, large ungulates show a single seasonal peak of heart rate, a proxy of energy expenditure, in early summer. Different to other large ungulates, wild boar females had peak heart rates early in the year (at ~ April, 1), which likely indicates high costs of reproduction. This peak was followed by a trough over summer and a secondary summit in autumn/early winter, which coincided with the mast seeding of oak trees and the mating season. Wild boars counteracted the effects of cold temperatures by decreasing subcutaneous body temperature by peripheral vasoconstriction. They also passively gained solar radiation energy by basking in the sun. However, the shape of the seasonal rhythm in HR indicates that it was apparently not primarily caused by thermoregulatory costs but by the costs of reproduction. Wild boar farrow early in the year, visible in high HRs and sudden changes in intraperitoneal body temperature of females. Arguably, a prerequisite for this early reproduction as well as for high energy metabolism over winter is the broad variety of food consumed by this species, i.e., the omnivorous lifestyle. Extremely warm and dry summers, as experienced during the study years (2017, 2018), may increasingly become a bottleneck for food intake of wild boar.
Filtering heart rates using data densities: The boxfilter R package
Over the past decades, there has been a growing interest in long‐term heart rate records, especially from free‐living animals. Largely, this increase is because most of the metabolic activity of tissues is based on oxygen delivery by the heart. Therefore, heart rate has served as a proxy for energy expenditure in animals. However, heart rates or other physiological variables recorded in humans and animals using loggers often contain noise. False measurements are sometimes eliminated by hand or by filters that reject variables based on the shape or frequency of the signal. Occasionally, outliers are rejected because they occur a long distance from genuine data. We introduce an R package, boxfilter, which enables users to eliminate noise based on counting the number of close neighbours inside a gliding window. Depending on the cut‐off value chosen, a focal point with a low proportion of neighbours will be rejected as noise. All three parameters, namely window width and height, as well as the cut‐off value, can be computed automatically. The choice of the clip‐off value beyond which data points are discarded is crucial. The package boxfilter cannot, of course, solve problems caused by completely erroneous measurements. Like the human eye, this filter prefers points that are part of a pattern, such as a dense band, and rejects isolated values. The boxfilter may also be applied to other measures than heart rate that do not change instantaneously, such as body temperature, blood pressure or sleep parameters.
Insights in the regulation of trimetylamine N-oxide production using a comparative biomimetic approach suggest a metabolic switch in hibernating bears
Experimental studies suggest involvement of trimethylamine N-oxide (TMAO) in the aetiology of cardiometabolic diseases and chronic kidney disease (CKD), in part via metabolism of ingested food. Using a comparative biomimetic approach, we have investigated circulating levels of the gut metabolites betaine, choline, and TMAO in human CKD, across animal species as well as during hibernation in two animal species. Betaine, choline, and TMAO levels were associated with renal function in humans and differed significantly across animal species. Free-ranging brown bears showed a distinct regulation pattern with an increase in betaine (422%) and choline (18%) levels during hibernation, but exhibited undetectable levels of TMAO. Free-ranging brown bears had higher betaine, lower choline, and undetectable TMAO levels compared to captive brown bears. Endogenously produced betaine may protect bears and garden dormice during the vulnerable hibernating period. Carnivorous eating habits are linked to TMAO levels in the animal kingdom. Captivity may alter the microbiota and cause a subsequent increase of TMAO production. Since free-ranging bears seems to turn on a metabolic switch that shunts choline to generate betaine instead of TMAO, characterisation and understanding of such an adaptive switch could hold clues for novel treatment options in burden of lifestyle diseases, such as CKD.
Edible dormice (Glis glis) avoid areas with a high density of their preferred food plant - the European beech
Background Numerous species, especially among rodents, are strongly affected by the availability of pulsed resources. The intermittent production of large seed crops in northern hemisphere tree species (e.g., beech Fagus spec. ,oak Quercus spec. , pine trees Pinus spec. ) are prime examples of these resource pulses. Adult edible dormice are highly dependent on high energy seeds to maximize their reproductive output. For juvenile dormice the energy rich food is important to grow and fatten in a very short time period prior to hibernation. While these erratic, often large-scale synchronized mast events provide overabundant seed availability, a total lack of seed production can be observed in so-called mast failure years. We hypothesized that dormice either switch territories between mast and non-mast years, to maximize energy availability or select habitats in which alternative food sources are also available (e.g., fleshy fruits, cones). To analyze the habitat preferences of edible dormice we performed environmental niche factor analyses (ENFA) for 9 years of capture-recapture data. Results As expected, the animals mainly used areas with high canopy closure and vertical stratification, probably to avoid predation. Surprisingly, we found that dormice avoided areas with high beech tree density, but in contrast preferred areas with a relatively high proportion of coniferous trees. Conifer cones and leaves can be an alternative food source for edible dormice and are less variable in availability. Conclusion Therefore, we conclude that edible dormice try to avoid areas with large fluctuations in food availability to be able to survive years without mast in their territory.
Use of social thermoregulation fluctuates with mast seeding and reproduction in a pulsed resource consumer
Edible dormice (Glis glis) can remain entirely solitary but frequently share sleeping sites with conspecifics in groups of up to 16 adults and yearlings. Here, we analysed grouping behaviour of 4564 marked individuals, captured in a 13-year study in nest boxes in a deciduous forest. We aimed to clarify (i) whether social thermoregulation is the primary cause for group formation and (ii) which factors affect group size and composition. Dormice temporarily formed both mixed and single-sex groups in response to acute cold ambient temperatures, especially those individuals with small body mass. Thus, thermoregulatory huddling appears to be the driving force for group formation in this species. Huddling was avoided—except for conditions of severe cold load—in years of full mast seeding, which is associated with reproduction and high foraging activity. Almost all females remained solitary during reproduction and lactation. Hence, entire populations of dormice switched between predominantly solitary lives in reproductive years to social behaviour in non-reproductive years. Non-social behaviour pointed to costs of huddling in terms of competition for local food resources even when food is generally abundant. The impact of competition was mitigated by a sex ratio that was biased towards males, which avoids sharing of food resources with related females that have extremely high energy demands during lactation. Importantly, dormice preferentially huddled in male-biased groups with litter mates from previous years. The fraction of related individuals increased with group size. Hence, group composition partly offsets the costs of shared food resources via indirect fitness benefits.
Hibernation is associated with increased survival and the evolution of slow life histories among mammals
Survival probability is predicted to underlie the evolution of life histories along a slow–fast continuum. Hibernation allows a diverse range of small mammals to exhibit seasonal dormancy, which might increase survival and consequently be associated with relatively slow life histories. We used phylogenetically informed GLS models to test for an effect of hibernation on seasonal and annual survival, and on key attributes of life histories among mammals. Monthly survival was in most cases higher during hibernation compared with the active season, probably because inactivity minimizes predation. Hibernators also have approximately 15 per cent higher annual survival than similar sized non-hibernating species. As predicted, we found an effect of hibernation on the relationships between life history attributes and body mass: small hibernating mammals generally have longer maximum life spans (50% greater for a 50 g species), reproduce at slower rates, mature at older ages and have longer generation times compared with similar-sized non-hibernators. In accordance with evolutionary theories, however, hibernating species do not have longer life spans than non-hibernators with similar survival rates, nor do they have lower reproductive rates than non-hibernators with similar maximum life spans. Thus, our combined results suggest that (i) hibernation is associated with high rates of overwinter and annual survival, and (ii) an increase in survival in hibernating species is linked with the coevolution of traits indicative of relatively slow life histories.