Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
81
result(s) for
"Bindila, Laura"
Sort by:
Cerebrospinal fluid endocannabinoid levels in Gilles de la Tourette syndrome
by
Musshoff Frank
,
Skripuletz, Thomas
,
Müller-Vahl, Kirsten R
in
2-Arachidonoylglycerol
,
Anandamide
,
Arachidonic acid
2020
Gilles de la Tourette syndrome (TS) is a complex neurodevelopmental disorder characterized by the presence of motor and vocal tics as well as psychiatric comorbidities such as attention-deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), depression, and anxiety. The underlying cause of the disease is still unknown, but several lines of evidence suggest a paramount role of the dopaminergic system. Based on the clinical observation that cannabis-based medicine including cannabis and delta-9-tetrahydrocannabinol (THC, dronabinol) may improve TS, alternatively, an involvement of the endocannabinoid system (ECS) has been suggested. In this study we measured cerebrospinal fluid (CSF) levels of the two most important endocannabinoids “N”-arachidonoylethanolamine (AEA, anandamide) and 2-arachidonoylglycerol (2-AG), the endocannabinoid-like molecule palmitoyl ethanolamide (PEA), and the lipid arachidonic acid (AA) in a sample of adult patients with TS (n = 20) compared with controls (n = 19) using liquid-liquid lipid extraction and simultaneous quantification by liquid chromatography multiple reaction monitoring (LC/MRM). CSF levels of AEA (p = 0.0018), 2-AG (p = 0.0003), PEA (p = 0.02), and AA (p < 0.0001) were significantly increased in TS compared with controls. Levels of 2-AG correlated with the severity of comorbid ADHD (p < 0.01). This is the first study, demonstrating alterations in the ECS suggesting an involvement of this system in the pathophysiology of TS. It can be speculated that elevated endocannabinoid levels either represent secondary changes in order to compensate for alterations in other neurotransmitter systems such as the dopaminergic system, are simply an epiphenomenon or, alternatively, represent the primary cause of TS.
Journal Article
Four-dimensional trapped ion mobility spectrometry lipidomics for high throughput clinical profiling of human blood samples
2023
Lipidomics encompassing automated lipid extraction, a four-dimensional (4D) feature selection strategy for confident lipid annotation as well as reproducible and cross-validated quantification can expedite clinical profiling. Here, we determine 4D descriptors (mass to charge, retention time, collision cross section, and fragmentation spectra) of 200 lipid standards and 493 lipids from reference plasma via trapped ion mobility mass spectrometry to enable the implementation of stringent criteria for lipid annotation. We use 4D lipidomics to confidently annotate 370 lipids in reference plasma samples and 364 lipids in serum samples, and reproducibly quantify 359 lipids using level-3 internal standards. We show the utility of our 4D lipidomics workflow for high-throughput applications by reliable profiling of intra-individual lipidome phenotypes in plasma, serum, whole blood, venous and finger-prick dried blood spots.
The circulatory lipidome is a valuable source for disease markers, but reliable marker discovery requires continuous development of lipidomic methods for large-scale clinical profiling. Here, the authors present a 4-dimensional lipidomics solution for confident and reproducible blood lipidome profiling.
Journal Article
A runner’s high depends on cannabinoid receptors in mice
2015
Exercise is rewarding, and long-distance runners have described a runner’s high as a sudden pleasant feeling of euphoria, anxiolysis, sedation, and analgesia. A popular belief has been that endogenous endorphins mediate these beneficial effects. However, running exercise increases blood levels of both β-endorphin (an opioid) and anandamide (an endocannabinoid). Using a combination of pharmacologic, molecular genetic, and behavioral studies in mice, we demonstrate that cannabinoid receptors mediate acute anxiolysis and analgesia after running. We show that anxiolysis depends on intact cannabinoid receptor 1 (CB1) receptors on forebrain GABAergic neurons and pain reduction on activation of peripheral CB1 and CB2 receptors. We thus demonstrate that the endocannabinoid system is crucial for two main aspects of a runner’s high. Sedation, in contrast, was not influenced by cannabinoid or opioid receptor blockage, and euphoria cannot be studied in mouse models.
Journal Article
Therapeutic Potential of Inhibitors of Endocannabinoid Degradation for the Treatment of Stress-Related Hyperalgesia in an Animal Model of Chronic Pain
by
Lerner, Raissa
,
Remmers, Floor
,
Schwitter, Claudia
in
Amidohydrolases - antagonists & inhibitors
,
Amidohydrolases - metabolism
,
Analgesics, Non-Narcotic - pharmacology
2015
The occurrence of chronic stress, depression, and anxiety can increase nociception in humans and may facilitate the transition from localized to chronic widespread pain. The mechanisms underlying chronic widespread pain are still unknown, hindering the development of effective pharmacological therapies. Here, we exposed C57BL/6J mice to chronic unpredictable stress (CUS) to investigate how persistent stress affects nociception. Next, mice were treated with multiple intramuscular nerve growth factor (NGF) injections, which induced chronic widespread nociception. Thus, combination of CUS and NGF served as a model where psychophysiological impairment coexists with long-lasting hyperalgesia. We found that CUS increased anxiety- and depression-like behavior and enhanced basal nociception in mice. When co-applied with repeated NGF injections, CUS elicited a sustained long-lasting widespread hyperalgesia. In order to evaluate a potential therapeutic strategy for the treatment of chronic pain associated with stress, we hypothesized that the endocannabinoid system (ECS) may represent a target signaling system. We found that URB597, an inhibitor of the anandamide-degrading enzyme fatty acid amide hydrolase (FAAH), and JZL184, an inhibitor of the 2-arachidonoyl glycerol-degrading enzyme monoacylglycerol lipase (MAGL), increased eCB levels in the brain and periphery and were both effective in reducing CUS-induced anxiety measured by the light-dark test and CUS-induced thermal hyperalgesia. Remarkably, the long-lasting widespread hyperalgesia induced by combining CUS and NGF was effectively reduced by URB597, but not by JZL184. Simultaneous inhibition of FAAH and MAGL did not improve the overall therapeutic response. Therefore, our findings indicate that enhancement of anandamide signaling with URB597 is a promising pharmacological approach for the alleviation of chronic widespread nociception in stress-exposed mice, and thus, it could represent a potential treatment strategy for chronic pain associated with neuropsychiatric disorders in humans.
Journal Article
The endocannabinoid anandamide is an airway relaxant in health and disease
2022
Chronic obstructive airway diseases are a global medical burden that is expected to increase in the near future. However, the underlying mechanistic processes are poorly understood so far. Herein, we show that the endocannabinoid anandamide (AEA) induces prominent airway relaxation in vitro and in vivo. In contrast to 2-arachidonlyglycerol-induced airway relaxation, this is mediated by fatty acid amide hydrolase (FAAH)-dependent metabolites. In particular, we identify mouse and also human epithelial and airway smooth muscle cells as source of AEA-induced prostaglandin E2 production and cAMP as direct mediator of AEA-dependent airway relaxation. Mass spectrometry experiments demonstrate reduced levels of endocannabinoid-like compounds in lungs of ovalbumin-sensitized mice indicating a pathophysiological relevance of endocannabinoid signalling in obstructive airway disease. Importantly, AEA inhalation protects against airway hyper-reactivity after ovalbumin sensitization. Thus, this work highlights the AEA/FAAH axis as a critical regulator of airway tone that could provide therapeutic targets for airway relaxation.
Obstructive lung diseases are a frequent cause of morbidity worldwide. Here, the authors identify the endocannabinoid anandamide (AEA) as an airway relaxant under physiological and pathophysiological conditions that can be locally applied to the lung as an aerosol in mice.
Journal Article
Lipid metabolism adaptations are reduced in human compared to murine Schwann cells following injury
2020
Mammals differ in their regeneration potential after traumatic injury, which might be caused by species-specific regeneration programs. Here, we compared murine and human Schwann cell (SC) response to injury and developed an ex vivo injury model employing surgery-derived human sural nerves. Transcriptomic and lipid metabolism analysis of murine SCs following injury of sural nerves revealed down-regulation of lipogenic genes and regulator of lipid metabolism, including
Pparg
(peroxisome proliferator-activated receptor gamma) and S1P (sphingosine-1-phosphate). Human SCs failed to induce similar adaptations following ex vivo nerve injury. Pharmacological PPARg and S1P stimulation in mice resulted in up-regulation of lipid gene expression, suggesting a role in SCs switching towards a myelinating state. Altogether, our results suggest that murine SC switching towards a repair state is accompanied by transcriptome and lipidome adaptations, which are reduced in humans.
The regeneration dynamics following peripheral nerve injury differs among species. Here, the authors compared transcriptomic and lipid metabolism changes in murine and human Schwann cells in vivo and ex vivo sural nerves, underlying their switch from myelinating to repair state following injury.
Journal Article
Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages
by
Srivastava, Raj Kamal
,
Marsicano, Giovanni
,
Sassmann, Antonia
in
Adipocytes
,
Adipocytes - metabolism
,
Adipose tissue
2017
Dysregulated adipocyte physiology leads to imbalanced energy storage, obesity, and associated diseases, imposing a costly burden on current health care. Cannabinoid receptor type-1 (CB1) plays a crucial role in controlling energy metabolism through central and peripheral mechanisms. In this work, adipocyte-specific inducible deletion of the CB1 gene (Ati-CB1-KO) was sufficient to protect adult mice from diet-induced obesity and associated metabolic alterations and to reverse the phenotype in already obese mice. Compared with controls, Ati-CB1-KO mice showed decreased body weight, reduced total adiposity, improved insulin sensitivity, enhanced energy expenditure, and fat depot-specific cellular remodeling toward lowered energy storage capacity and browning of white adipocytes. These changes were associated with an increase in alternatively activated macrophages concomitant with enhanced sympathetic tone in adipose tissue. Remarkably, these alterations preceded the appearance of differences in body weight, highlighting the causal relation between the loss of CB1 and the triggering of metabolic reprogramming in adipose tissues. Finally, the lean phenotype of Ati-CB1-KO mice and the increase in alternatively activated macrophages in adipose tissue were also present at thermoneutral conditions. Our data provide compelling evidence for a crosstalk among adipocytes, immune cells, and the sympathetic nervous system (SNS), wherein CB1 plays a key regulatory role.
Journal Article
Extended coverage of human serum glycosphingolipidome by 4D-RP-LC TIMS-PASEF unravels association with Parkinson’s disease
2025
Glycosphingolipids (GSLs) are important targets in immune, infectious, lysosomal storage diseases, cancer, and neurodegenerative diseases. Circulatory GSLs profiling in clinical samples is restricted by the lack of mid- and high-throughput analytical methods and deep coverage of long-chain sialylated glycosphingolipidome. We present a 4-dimensional (4D)-glycosphingolipidomics platform for routine glycosphingolipidome profiling encompassing: extraction and fractionation of sialylated GSLs with 3 to 15 monosaccharides, neutral GSLs and sulfatides; µL-flow reversed-phase LC-TIMS-PASEF MS analysis; semi-quantification strategy adapted for fractionated glycosphingolipidome, and referential CCS, RT, and
m
/
z
values for GSLs annotation. 4D-glycosphingolipidomics of human serum reveals a high structural heterogeneity, amounting to 376 GSLs: 159 GSLs of ganglio- and neolacto-series, 145 neutral GSLs and 72 sulfatides. Here we demonstrate the platform’s utility for clinical profiling of Parkinson’s disease (PD) sera. 41 neolacto- and ganglio-species discriminate PD patients from controls and 14 GSLs differentiate sex subgroups, laying the foundation for further functional GSL studies with PD.
4D-TIMS-glycosphingolipidomics expedite clinical serum profiling of 376 GSLs covering ganglio- and neolacto-series, neutrals and sulfatides. Clinical phenotyping of Parkinson’s disease cohort (sub)groups identified up to 41 GSLs fingerprints.
Journal Article
Fear extinction learning and anandamide: an fMRI study in healthy humans
2021
Anxiety- and trauma-related disorders are severe illnesses with high prevalence. Current treatment options leave room for improvement and the endocannabinoid system (ECS) has become a key target in psychopharmacological research. Rodent models suggest an anxiolytic effect of endocannabinoids and demonstrated that the ECS is involved in the modulation of fear learning and aversive memory consolidation. So far, one prominent target was inhibition of fatty acid amino hydrolase (FAAH), the degrading enzyme of the endocannabinoid anandamide (AEA). Research in humans remains scarce, but genetic studies have found that the single-nucleotide polymorphism (SNP) FAAH C385A (rs324420) is associated with lower catabolic performance of FAAH and increased levels of AEA. Translational research on the ECS in fear learning processes is rare, yet crucial to understand the mechanisms involved. To address this lack of research, we designed a fear conditioning, extinction learning paradigm with 51 healthy, male humans who underwent functional magnetic resonance imaging (fMRI) before analysing baseline and task-related changes of AEA, as well as the FAAH polymorphism (rs324420). The results indicate higher AEA levels in AC-heterozygotes than in CC-individuals (SNP rs324420), but no difference between the groups during extinction learning. However, neural activation of the anterior cingulate cortex and anterior insular cortex during extinction learning correlated positively with AEA baseline levels, and task-related changes in AEA were found particularly during fear extinction, with a modulatory effect on neural activation related to extinction learning. Results indicate a putative role for AEA in fear extinction learning. Pre-treatment with AEA-enhancing drugs could promote extinction learning during psychotherapeutic interventions.
Journal Article
Targeting sphingolipid metabolism with the sphingosine kinase inhibitor SKI-II overcomes hypoxia-induced chemotherapy resistance in glioblastoma cells: effects on cell death, self-renewal, and invasion
2023
Background
Glioblastoma patients commonly develop resistance to temozolomide chemotherapy. Hypoxia, which supports chemotherapy resistance, favors the expansion of glioblastoma stem cells (GSC), contributing to tumor relapse. Because of a deregulated sphingolipid metabolism, glioblastoma tissues contain high levels of the pro-survival sphingosine-1-phosphate and low levels of the pro-apoptotic ceramide. The latter can be metabolized to sphingosine-1-phosphate by sphingosine kinase (SK) 1 that is overexpressed in glioblastoma. The small molecule SKI-II inhibits SK and dihydroceramide desaturase 1, which converts dihydroceramide to ceramide. We previously reported that SKI-II combined with temozolomide induces caspase-dependent cell death, preceded by dihydrosphingolipids accumulation and autophagy in normoxia. In the present study, we investigated the effects of a low-dose combination of temozolomide and SKI-II under normoxia and hypoxia in glioblastoma cells and patient-derived GCSs.
Methods
Drug synergism was analyzed with the Chou-Talalay Combination Index method. Dose–effect curves of each drug were determined with the Sulforhodamine B colorimetric assay. Cell death mechanisms and autophagy were analyzed by immunofluorescence, flow cytometry and western blot; sphingolipid metabolism alterations by mass spectrometry and gene expression analysis. GSCs self-renewal capacity was determined using extreme limiting dilution assays and invasion of glioblastoma cells using a 3D spheroid model.
Results
Temozolomide resistance of glioblastoma cells was increased under hypoxia. However, combination of temozolomide (48 µM) with SKI-II (2.66 µM) synergistically inhibited glioblastoma cell growth and potentiated glioblastoma cell death relative to single treatments under hypoxia. This low-dose combination did not induce dihydrosphingolipids accumulation, but a decrease in ceramide and its metabolites. It induced oxidative and endoplasmic reticulum stress and triggered caspase-independent cell death. It impaired the self-renewal capacity of temozolomide-resistant GSCs, especially under hypoxia. Furthermore, it decreased invasion of glioblastoma cell spheroids.
Conclusions
This in vitro study provides novel insights on the links between sphingolipid metabolism and invasion, a hallmark of cancer, and cancer stem cells, key drivers of cancer. It demonstrates the therapeutic potential of approaches that combine modulation of sphingolipid metabolism with first-line agent temozolomide in overcoming tumor growth and relapse by reducing hypoxia-induced resistance to chemotherapy and by targeting both differentiated and stem glioblastoma cells.
Journal Article