Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
412
result(s) for
"Biochimie et Physiologie Moléculaire des Plantes (BPMP) "
Sort by:
Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K(+) and phosphorus in the host plant
by
Biochimie et Physiologie Moléculaire des Plantes (BPMP) ; Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
,
Delteil, Amandine
,
Plateforme d'histocytologie et d'imagerie cellulaire végétale (PHIV) ; Biochimie et Physiologie Moléculaire des Plantes (BPMP) ; Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (
in
Biological Transport - drug effects
,
DNA, Bacterial - genetics
,
ectomycorrhizae
2014
Mycorrhizal associations are known to improve the hydro-mineral nutrition of their host plants. However, the importance of mycorrhizal symbiosis for plant potassium nutrition has so far been poorly studied. We therefore investigated the impact of the ectomycorrhizal fungus Hebeloma cylindrosporum on the potassium nutrition of Pinus pinaster and examined the involvement of the fungal potassium transporter HcTrk1. HcTrk1 transcripts and proteins were localized in ectomycorrhizas using in situ hybridization and EGFP translational fusion constructs. Importantly, an overexpression strategy was performed on a H. cylindrosporum endogenous gene in order to dissect the role of this transporter. The potassium nutrition of mycorrhizal pine plants was significantly improved under potassium-limiting conditions. Fungal strains overexpressing HcTrk1 reduced the translocation of potassium and phosphorus from the roots to the shoots of inoculated plants in mycorrhizal experiments. Furthermore, expression of HcTrk1 and the phosphate transporter HcPT1.1 were reciprocally linked to the external inorganic phosphate and potassium availability. The development of these approaches provides a deeper insight into the role of ectomycorrhizal symbiosis on host plant K(+) nutrition and in particular, the K(+) transporter HcTrk1. The work augments our knowledge of the link between potassium and phosphorus nutrition via the mycorrhizal pathway.
Journal Article
Coumarin accumulation and trafficking in Arabidopsis thaliana : a complex and dynamic process
by
Interactions Arbres-Microorganismes (IAM) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
,
Department of Botany and Plant Biology
,
Lefebvre‐legendre, Linnka
in
Accumulation
,
Arabidopsis
,
Arabidopsis Proteins
2021
Iron (Fe) is a major micronutrient and is required for plant growth and development. Nongrass species have evolved a reduction-based strategy to solubilize and take up Fe. The secretion of Fe-mobilizing coumarins (e.g. fraxetin, esculetin and sideretin) by plant roots plays an important role in this process. Although the biochemical mechanisms leading to their biosynthesis have been well described, very little is known about their cellular and subcellular localization or their mobility within plant tissues. Spectral imaging was used to monitor, in Arabidopsis thaliana, the in planta localization of Fe-mobilizing coumarins and scopolin. Molecular, genetic and biochemical approaches were also used to investigate the dynamics of coumarin accumulation in roots. These approaches showed that root hairs play a major role in scopoletin secretion, whereas fraxetin and esculetin secretion occurs through all epidermis cells. The findings of this study also showed that the transport of coumarins from the cortex to the rhizosphere relies on the PDR9 transporter under Fe-deficient conditions. Additional experiments support the idea that coumarins move throughout the plant body via the xylem sap and that several plant species can take up coumarins present in the surrounding media. Altogether, the data presented here demonstrate that coumarin storage and accumulation in roots is a highly complex and dynamic process.
Journal Article
Characterization of the grapevine Shaker K+ channel VvK3.1 supports its function in massive potassium fluxes necessary for berry potassium loading and pulvinus-actuated leaf movements
by
Biochimie et Physiologie Moléculaire des Plantes (BPMP) ; Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
,
Nieves-Cordones, Manuel
,
Plateforme d'histocytologie et d'imagerie cellulaire végétale (PHIV) ; Biochimie et Physiologie Moléculaire des Plantes (BPMP) ; Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpel
2019
In grapevine, climate changes lead to increased berry potassium (K+ ) contents that result in must with low acidity. Consequently, wines are becoming 'flat' to the taste, with poor organoleptic properties and low potential aging, resulting in significant economic loss. Precise investigation into the molecular determinants controlling berry K+ accumulation during its development are only now emerging. Here, we report functional characterization by electrophysiology of a new grapevine Shaker-type K+ channel, VvK3.1. The analysis of VvK3.1 expression patterns was performed by qPCR and in situ hybridization. We found that VvK3.1 belongs to the AKT2 channel phylogenetic branch and is a weakly rectifying channel, mediating both inward and outward K+ currents. We showed that VvK3.1 is highly expressed in the phloem and in a unique structure located at the two ends of the petiole, identified as a pulvinus. From the onset of fruit ripening, all data support the role of the VvK3.1 channel in the massive K+ fluxes from the phloem cell cytosol to the berry apoplast during berry K+ loading. Moreover, the high amount of VvK3.1 transcripts detected in the pulvinus strongly suggests a role for this Shaker in the swelling and shrinking of motor cells involved in paraheliotropic leaf movements.
Journal Article
Fungal Shaker-like channels beyond cellular K+ homeostasis: a role in ectomycorrhizal symbiosis between Hebeloma cylindrosporum and Pinus pinaster
by
Delteil, Amandine
,
Frank, Hannah E.R
,
Conejero, Geneviève
in
Biology and Life Sciences
,
Ectomycorrhizas
,
Fungal Proteins - biosynthesis
2020
Potassium (K +) acquisition, translocation and cellular homeostasis are mediated by various membrane transport systems in all organisms. We identified and described an ion channel in the ectomycorrhizal fungus Hebeloma cylindrosporum (HcSKC) that harbors features of animal voltage-dependent Shaker-like K + channels, and investigated its role in both free-living hyphae and symbiotic conditions. RNAi lines affected in the expression of HcSKC were produced and used for in vitro mycorrhizal assays with the maritime pine as host plant, under standard or low K + conditions. The adaptation of H. cylindrosporum to the downregulation of HcSKC was analyzed by qRT-PCR analyses for other K +-related transport proteins: the transporters HcTrk1, HcTrk2, and HcHAK, and the ion channels HcTOK1, HcTOK2.1, and HcTOK2.2. Downregulated HcSKC transformants displayed greater K + contents at standard K + only. In such conditions, plants inoculated with these transgenic lines were impaired in K + nutrition. Taken together, these results support the hypothesis that the reduced expression of HcSKC modifies the pool of fungal K + available for the plant and/or affects its symbiotic transfer to the roots. Our study reveals that the maintenance of K + transport in H. cylindrosporum, through the regulation of HcSKC expression, is required for the K + nutrition of the host plant.
Journal Article
Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana
by
Nakagawa, Tsuyoshi
,
Department of Molecular and Functional Genomics ; Partenaires INRAE
,
Graduate School of Bioagricultural Sciences, Nagoya University
in
38/39
,
38/77
,
631/449/1736
2021
Plants use nitrate, ammonium, and organic nitrogen in the soil as nitrogen sources. Since the elevated CO 2 environment predicted for the near future will reduce nitrate utilization by C 3 species, ammonium is attracting great interest. However, abundant ammonium nutrition impairs growth, i.e., ammonium toxicity, the primary cause of which remains to be determined. Here, we show that ammonium assimilation by GLUTAMINE SYNTHETASE 2 (GLN2) localized in the plastid rather than ammonium accumulation is a primary cause for toxicity, which challenges the textbook knowledge. With exposure to toxic levels of ammonium, the shoot GLN2 reaction produced an abundance of protons within cells, thereby elevating shoot acidity and stimulating expression of acidic stress-responsive genes. Application of an alkaline ammonia solution to the ammonium medium efficiently alleviated the ammonium toxicity with a concomitant reduction in shoot acidity. Consequently, we conclude that a primary cause of ammonium toxicity is acidic stress.
Journal Article
Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure
by
Grondin, Alexandre
,
Saijo, Yusuke
,
Leonhardt, Nathalie
in
Abscisic acid
,
Abscisic Acid - metabolism
,
Accumulation
2017
Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the AtPIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability (Pf) of guard cell protoplasts through activation of AtPIP2;1. The use of HyPer, a genetic probe for intracellular hydrogen peroxide (H2O2), revealed that both ABA and flg22 triggered an accumulation of H2O2 in wild-type but not pip2;1 guard cells. Pretreatment of guard cells with flg22 or ABA facilitated the influx of exogenous H2O2 Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6) were both necessary to flg22-induced Pf and both phosphorylated AtPIP2;1 on Ser121 in vitro. Accumulation of H2O2 and stomatal closure as induced by flg22 was restored in pip2;1 guard cells by a phosphomimetic form (Ser121Asp) but not by a phosphodeficient form (Ser121Ala) of AtPIP2;1. We propose a mechanism whereby phosphorylation of AtPIP2;1 Ser121 by BAK1 and/or OST1 is triggered in response to flg22 to activate its water and H2O2 transport activities. This work establishes a signaling role of plasma membrane aquaporins in guard cells and potentially in other cellular context involving H2O2 signaling.
Journal Article
Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants
by
Biochimie et Physiologie Moléculaire des Plantes (BPMP) ; Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
,
Krouk, Gabriel
,
Tanurdžić, Miloš
in
Anion Transport Proteins - genetics
,
Anion Transport Proteins - metabolism
,
Arabidopsis - genetics
2019
Nitrogen (N) and phosphorus (P) are key macronutrients sustaining plant growth and crop yield, and ensuring food security worldwide. Understanding how plants perceive and interpret the combinatorial nature of these signals thus has important agricultural implications within the context of: i) increased food demand, ii) limited P supply, and iii) environmental pollution due to N fertilizer usage. Here we report the discovery of an active control of P Starvation Responses (PSR) by a combination of local and long-distance N signaling pathways in plants. We show that, in Arabidopsis thaliana, the nitrate transceptor CHLORINA 1/ NITRATE TRANSPORTER 1.1 (CHL1/NRT1.1) is a component of this signaling crosstalk. We also demonstrate that this crosstalk is dependent on the control of the accumulation and turnover by N of the transcription factor PHOSPHATE STARVATION RESPONSE 1/PHR1, a master regulator of P sensing and signaling. We further show an important role of PHOSPHATE 2/PHO2 as an integrator of the N availability into the PSR since the effect of N on PSR is strongly affected in pho2 mutants. We finally show that PHO2 and NRT1.1 influence each other's transcript levels. These observations are summarized in a model representing a framework with several entry points where N signal influence PSR. Finally, we demonstrate that this phenomenon is conserved in rice (Oryza sativa) and wheat (Triticum aestivum) opening biotechnological perspectives in crop plants.
Journal Article
Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource
by
Nacry, Philippe
,
Gojon, Alain
,
Bouguyon, Eléonore
in
Acid soils
,
Adaptation
,
Agronomy. Soil science and plant productions
2013
Nitrogen (N) is one of the key mineral nutrients for plants and its availability has a major impact on their growth and development. Most often N resources are limiting and plants have evolved various strategies to modulate their root uptake capacity to compensate for both spatial and temporal changes in N availability in soil. The main N sources for terrestrial plants in soils of temperate regions are in decreasing order of abundance, nitrate, ammonium and amino acids. N uptake systems combine, for these different N forms, high- and low-affinity transporters belonging to multige families. Expression and activity of most uptake systems are regulated locally by the concentration of their substrate, and by a systemic feedback control exerted by whole-plant signals of N status, giving rise to a complex combinatory network. Besides modulation of the capacity of transport systems, plants are also able to modulate their growth and development to maintain N homeostasis. In particular, root system architecture is highly plastic and its changes can greatly impact N acquisition from soil. In this review, we aim at detailing recent advances in the identification of molecular mechanisms responsible for physiological and developmental responses of root N acquisition to changes in N availability. These mechanisms are now unravelled at an increasing rate, especially in the model plant Arabidopsis thaliana L.. Within the past decade, most root membrane transport proteins that determine N acquisition have been identified. More recently, molecular regulators in nitrate or ammonium sensing and signalling have been isolated, revealing common regulatory genes for transport system and root development, as well as a strong connection between N and hormone signalling pathways. Deciphering the complexity of the regulatory networks that control N uptake, metabolism and plant development will help understanding adaptation of plants to sub-optimal N availability and fluctuating environments. It will also provide solutions for addressing the major issues of pollution and economical costs related to N fertilizer use that threaten agricultural and ecological sustainability.
Journal Article
Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation
by
Biochimie et Physiologie Moléculaire des Plantes (BPMP) ; Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
,
Grondin, Alexandre
,
Leonhardt, Nathalie
in
Abscisic Acid
,
Abscisic Acid - pharmacology
,
Animals
2015
Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1) aquaporin have a defect in stomatal closure, specifically in response to abscisic acid (ABA). ABA induced a 2-fold increase in osmotic water permeability (Pf) of guard cell protoplasts and an accumulation of reactive oxygen species in guard cells, which were both abrogated in pip2;1 plants. Open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6), a protein kinase involved in guard cell ABA signaling, was able to phosphorylate a cytosolic PIP2;1 peptide at Ser-121. OST1 enhanced PIP2;1 water transport activity when coexpressed in Xenopus laevis oocytes. Upon expression in pip2;1 plants, a phosphomimetic form (Ser121Asp) but not a phosphodeficient form (Ser121Ala) of PIP2;1 constitutively enhanced the Pf of guard cell protoplasts while suppressing its ABA-dependent activation and was able to restore ABA-dependent stomatal closure in pip2;1. This work supports a model whereby ABA-triggered stomatal closure requires an increase in guard cell permeability to water and possibly hydrogen peroxide, through OST1-dependent phosphorylation of PIP2;1 at Ser-121.
Journal Article
Responses to Systemic Nitrogen Signaling in Arabidopsis Roots Involve trans-Zeatin in Shoots
by
Biochimie et Physiologie Moléculaire des Plantes (BPMP) ; Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
,
Krouk, Gabriel
,
Novák, Ondřej
in
Acclimation
,
Acclimatization
,
Biosynthesis
2018
Plants face temporal and spatial variation in nitrogen (N) availability. This includes heterogeneity in soil nitrate (NO3-) content. To overcome these constraints, plants modify their gene expression and physiological processes to optimize N acquisition. This plasticity relies on a complex long-distance root-shoot-root signaling network that remains poorly understood. We previously showed that cytokinin (CK) biosynthesis is required to trigger systemic N signaling. Here, we performed split-root experiments and used a combination of CK-related mutant analyses, hormone profiling, transcriptomic analysis, NO3- uptake assays, and root growth measurements to gain insight into systemic N signaling in Arabidopsis thaliana. By comparing wild-type plants and mutants affected in CK biosynthesis and ABCG14-dependent root-to-shoot translocation of CK, we revealed an important role for active trans-Zeatin (tZ) in systemic N signaling. Both rapid sentinel gene regulation and long-term functional acclimation to heterogeneous NO3- supply, including NO3- transport and root growth regulation, are likely mediated by the integration of tZ content in shoots. Furthermore, shoot transcriptome profiling revealed that glutamate/glutamine metabolism is likely a target of tZ root-to-shoot translocation, prompting an interesting hypothesis regarding shoot-to-root communication. Finally, this study highlights tZ-independent pathways regulating gene expression in shoots as well as NO3- uptake activity in response to total N-deprivation.
Journal Article