Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Birling, M-c"
Sort by:
Importing genetically altered animals: ensuring quality
2022
The reproducibility of research using laboratory animals requires reliable management of their quality, in particular of their genetics, health and environment, all of which contribute to their phenotypes. The point at which these biological materials are transferred between researchers is particularly sensitive, as it may result in a loss of integrity of the animals and/or their documentation. Here, we describe the various aspects of laboratory animal quality that should be confirmed when sharing rodent research models. We also discuss how repositories of biological materials support the scientific community to ensure the continuity of the quality of laboratory animals. Both the concept of quality and the role of repositories themselves extend to all exchanges of biological materials and all networks that support the sharing of these reagents.
Journal Article
Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse
2018
Synapse development and neuronal activity represent fundamental processes for the establishment of cognitive function. Structural organization as well as signalling pathways from receptor stimulation to gene expression regulation are mediated by synaptic activity and misregulated in neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). Deleterious mutations in the PTCHD1 (Patched domain containing 1) gene have been described in male patients with X-linked ID and/or ASD. The structure of PTCHD1 protein is similar to the Patched (PTCH1) receptor; however, the cellular mechanisms and pathways associated with PTCHD1 in the developing brain are poorly determined. Here we show that PTCHD1 displays a C-terminal PDZ-binding motif that binds to the postsynaptic proteins PSD95 and SAP102. We also report that PTCHD1 is unable to rescue the canonical sonic hedgehog (SHH) pathway in cells depleted of PTCH1, suggesting that both proteins are involved in distinct cellular signalling pathways. We find that Ptchd1 deficiency in male mice (Ptchd1-/y ) induces global changes in synaptic gene expression, affects the expression of the immediate-early expression genes Egr1 and Npas4 and finally impairs excitatory synaptic structure and neuronal excitatory activity in the hippocampus, leading to cognitive dysfunction, motor disabilities and hyperactivity. Thus our results support that PTCHD1 deficiency induces a neurodevelopmental disorder causing excitatory synaptic dysfunction.
Journal Article
Reg-2 is a motoneuron neurotrophic factor and a signalling intermediate in the CNTF survival pathway
by
Nishimune, Hiroshi
,
Vasseur, Sophie
,
Henderson, Christopher E.
in
Adenovirus
,
Adenoviruses
,
Amyotrophic lateral sclerosis
2000
Cytokines that are related to ciliary neurotrophic factor (CNTF) are physiologically important survival factors for motoneurons, but the mechanisms by which they prevent neuronal cell death remain unknown. Reg-2/PAP I (pancreatitis-associated protein I), referred to here as Reg-2, is a secreted protein whose expression in motoneurons during development is dependent on cytokines. Here we show that CNTF-related cytokines induce Reg-2 expression in cultured motoneurons. Purified Reg-2 can itself act as an autocrine/paracrine neurotrophic factor for a subpopulation of motoneurons, by stimulating a survival pathway involving phosphatidylinositol-3-kinase, Akt kinase and NF-κB. Blocking Reg-2 expression in motoneurons using
Reg-2
antisense adenovirus specifically abrogates the survival effect of CNTF on cultured motoneurons, indicating that Reg-2 expression is a necessary step in the CNTF survival pathway.
Reg-2
shows a unique pattern of expression in late embryonic spinal cord: it is progressively upregulated in individual motoneurons on a cell-by-cell basis, indicating that only a fraction of motoneurons in a given motor pool may be exposed to cytokines. Thus, Reg-2 is a neurotrophic factor for motoneurons, and is itself an obligatory intermediate in the survival signalling pathway of CNTF-related cytokines.
Journal Article
BIN1 genetic risk factor for Alzheimer is sufficient to induce early structural tract alterations in entorhinal-hippocampal area and memory-related hippocampal multi-scale impairments
by
Lepagnol-Bestel, Am
,
Uszynski, I
,
Tsurugizawa, T
in
Alzheimer's disease
,
Apolipoprotein E
,
Autopsy
2021
Abstract Genetic factors are known to contribute to Late Onset Alzheimer’s disease (LOAD) but their contribution to pathophysiology, specially to prodomic phases accessible to therapeutic approaches are far to be understood. To translate genetic risk of Alzheimer’s disease (AD) into mechanistic insight, we generated transgenic mouse lines that express a ∼195 kbp human BAC that includes only BIN1, a gene associated to LOAD. This model gives a modest BIN1 overexpression, dependent of the number of BAC copies. At 6 months of age, we detected impaired entorhinal cortex (EC)-hippocampal pathways with specific impairments in EC-dentate gyrus synaptic long-term potentiation, dendritic spines of granular cells and recognition episodic memory. Structural changes were quantified using MRI. Their whole-brain functional impact were analyzed using resting state fMRI with a hypoconnectivity centered on entorhinal cortex. These early phenotype defects independent of any changes in A-beta can be instrumental in the search for new AD drug targets. Competing Interest Statement The authors have declared no competing interest. Footnotes * ↵§ Joint second co-authors * ↵* Senior co-authors * Genetic factors are known to contribute to Late Onset Alzheimer disease (LOAD) but their contribution to pathophysiology, specially to prodomic phases accessible to therapeutic approaches are far to be understood. To translate genetic risk of Alzheimer disease (AD) into mechanistic insight, we generated transgenic mouse lines that express a ~195 kbp human BAC that includes only BIN1, a gene associated to LOAD. This model gives a modest BIN1 overexpression, dependent of the number of BAC copies. At 6 months of age, we detected impaired entorhinal cortex (EC)-hippocampal pathways with specific impairments in EC-dentate gyrus synaptic long-term potentiation, dendritic spines of granular cells and recognition episodic memory. Structural changes were quantified using MRI. Their whole-brain functional impact were analyzed using resting state fMRI with a hypoconnectivity centered on entorhinal cortex. These early phenotype defects independent of any changes in A-beta can be instrumental in the search for new AD drug targets.