Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
43
result(s) for
"Birman, Daniel"
Sort by:
MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites
2017
Quality control of MRI is essential for excluding problematic acquisitions and avoiding bias in subsequent image processing and analysis. Visual inspection is subjective and impractical for large scale datasets. Although automated quality assessments have been demonstrated on single-site datasets, it is unclear that solutions can generalize to unseen data acquired at new sites. Here, we introduce the MRI Quality Control tool (MRIQC), a tool for extracting quality measures and fitting a binary (accept/exclude) classifier. Our tool can be run both locally and as a free online service via the OpenNeuro.org portal. The classifier is trained on a publicly available, multi-site dataset (17 sites, N = 1102). We perform model selection evaluating different normalization and feature exclusion approaches aimed at maximizing across-site generalization and estimate an accuracy of 76%±13% on new sites, using leave-one-site-out cross-validation. We confirm that result on a held-out dataset (2 sites, N = 265) also obtaining a 76% accuracy. Even though the performance of the trained classifier is statistically above chance, we show that it is susceptible to site effects and unable to account for artifacts specific to new sites. MRIQC performs with high accuracy in intra-site prediction, but performance on unseen sites leaves space for improvement which might require more labeled data and new approaches to the between-site variability. Overcoming these limitations is crucial for a more objective quality assessment of neuroimaging data, and to enable the analysis of extremely large and multi-site samples.
Journal Article
A flexible readout mechanism of human sensory representations
2019
Attention can both enhance and suppress cortical sensory representations. However, changing sensory representations can also be detrimental to behavior. Behavioral consequences can be avoided by flexibly changing sensory readout, while leaving the representations unchanged. Here, we asked human observers to attend to and report about either one of two features which control the visibility of motion while making concurrent measurements of cortical activity with BOLD imaging (fMRI). We extend a well-established linking model to account for the relationship between these measurements and find that changes in sensory representation during directed attention are insufficient to explain perceptual reports. Adding a flexible downstream readout is necessary to best explain our data. Such a model implies that observers should be able to recover information about ignored features, a prediction which we confirm behaviorally. Thus, flexible readout is a critical component of the cortical implementation of human adaptive behavior.
It is known that attention can modify the brain's representations of sensory stimuli to enhance features of importance. Here, the authors show that flexible readout of cortical representations is also required to explain the behavioral effects of attention.
Journal Article
Gain, not concomitant changes in spatial receptive field properties, improves task performance in a neural network attention model
by
Birman, Daniel
,
Fox, Kai J
,
Gardner, Justin L
in
Attention
,
convolutional neural network
,
Cortex (somatosensory)
2023
Attention allows us to focus sensory processing on behaviorally relevant aspects of the visual world. One potential mechanism of attention is a change in the gain of sensory responses. However, changing gain at early stages could have multiple downstream consequences for visual processing. Which, if any, of these effects can account for the benefits of attention for detection and discrimination? Using a model of primate visual cortex we document how a Gaussian-shaped gain modulation results in changes to spatial tuning properties. Forcing the model to use only these changes failed to produce any benefit in task performance. Instead, we found that gain alone was both necessary and sufficient to explain category detection and discrimination during attention. Our results show how gain can give rise to changes in receptive fields which are not necessary for enhancing task performance.
Journal Article
The point of no return in vetoing self-initiated movements
2016
In humans, spontaneous movements are often preceded by early brain signals. One such signal is the readiness potential (RP) that gradually arises within the last second preceding a movement. An important question is whether people are able to cancel movements after the elicitation of such RPs, and if so until which point in time. Here, subjects played a game where they tried to press a button to earn points in a challenge with a brain–computer interface (BCI) that had been trained to detect their RPs in real time and to emit stop signals. Our data suggest that subjects can still veto a movement even after the onset of the RP. Cancellation of movements was possible if stop signals occurred earlier than 200 ms before movement onset, thus constituting a point of no return.
Journal Article
Parietal and prefrontal: categorical differences?
2016
A working memory representation goes missing in monkey parietal cortex during categorization learning, but is still found in the prefrontal cortex.
Journal Article
A modular architecture for organizing, processing and sharing neurophysiology data
by
Steven J. West
,
Valeria Aguillon-Rodriguez
,
Kamron Saniee
in
631/114/2401
,
631/1647/2198
,
631/1647/334/1874/345
2023
We describe an architecture for organizing, integrating and sharing neurophysiology data within a single laboratory or across a group of collaborators. It comprises a database linking data files to metadata and electronic laboratory notes; a module collecting data from multiple laboratories into one location; a protocol for searching and sharing data and a module for automatic analyses that populates a website. These modules can be used together or individually, by single laboratories or worldwide collaborations.
A modular architecture for managing and sharing electrophysiology, behavior, colony management and other data has been built to support individual laboratories or large consortia.
Journal Article
Computational Linking Models of Human Selective Visual Attention
2019
To sample the important parts of the visual world observers make saccades, moving the high-resolution and color-sensitive fovea to informative locations. Choosing to make a saccade requires sampling the periphery and identifying potentially important parts of the visual scene. This covert attention, without eye movement, is essential to selecting information in an efficient manner. At an intuitive level covert attention is a focusing on a feature or a location in the visual world and a suppression of other irrelevant features and locations. When operationalized into the laboratory, cueing an observer with covert attention can be shown to result in improved detection, smaller thresholds of discrimination, faster reaction times, and suppression of distractors. These changes are known to be in part the result of small tweaks to the representation of visual stimuli in sensory cortex, but are also the result of context-dependent selection occurring after sensory processing has gone to completion. How attention implements this balance of sensory change and selection is a central problem for the neuroscience of vision.
Dissertation
Reproducibility of in vivo electrophysiological measurements in mice
2025
Understanding brain function relies on the collective work of many labs generating reproducible results. However, reproducibility has not been systematically assessed within the context of electrophysiological recordings during cognitive behaviors. To address this, we formed a multi-lab collaboration using a shared, open-source behavioral task and experimental apparatus. Experimenters in 10 laboratories repeatedly targeted Neuropixels probes to the same location (spanning secondary visual areas, hippocampus, and thalamus) in mice making decisions; this generated a total of 121 experimental replicates, a unique dataset for evaluating reproducibility of electrophysiology experiments. Despite standardizing both behavioral and electrophysiological procedures, some experimental outcomes were highly variable. A closer analysis uncovered that variability in electrode targeting hindered reproducibility, as did the limited statistical power of some routinely used electrophysiological analyses, such as single-neuron tests of modulation by individual task parameters. Reproducibility was enhanced by histological and electrophysiological quality-control criteria. Our observations suggest that data from systems neuroscience is vulnerable to a lack of reproducibility, but that across-lab standardization, including metrics we propose, can serve to mitigate this.
Journal Article
Reproducibility of in vivo electrophysiological measurements in mice
2025
Understanding brain function relies on the collective work of many labs generating reproducible results. However, reproducibility has not been systematically assessed within the context of electrophysiological recordings during cognitive behaviors. To address this, we formed a multi-lab collaboration using a shared, open-source behavioral task and experimental apparatus. Experimenters in 10 laboratories repeatedly targeted Neuropixels probes to the same location (spanning secondary visual areas, hippocampus, and thalamus) in mice making decisions; this generated a total of 121 experimental replicates, a unique dataset for evaluating reproducibility of electrophysiology experiments. Despite standardizing both behavioral and electrophysiological procedures, some experimental outcomes were highly variable. A closer analysis uncovered that variability in electrode targeting hindered reproducibility, as did the limited statistical power of some routinely used electrophysiological analyses, such as single-neuron tests of modulation by individual task parameters. Reproducibility was enhanced by histological and electrophysiological quality-control criteria. Our observations suggest that data from systems neuroscience is vulnerable to a lack of reproducibility, but that across-lab standardization, including metrics we propose, can serve to mitigate this.
Journal Article