Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
185
result(s) for
"Bishop, Charles M."
Sort by:
Flying fast improves aerodynamic economy of heavier birds
by
Bishop, Charles M.
,
Halsey, Lewis G.
,
Askew, Graham N.
in
631/158/2039
,
631/158/2455
,
631/158/856
2024
A paradox of avian long-distance migrations is that birds must greatly increase their body mass prior to departure, yet this is presumed to substantially increase their energy cost of flight. However, here we show that when homing pigeons flying in a flock are loaded with ventrally located weight, both their heart rate and estimated energy expenditure rise by a remarkably small amount. The net effect is that costs per unit time increase only slightly and per unit mass they decrease. We suggest that this is because these homing flights are relatively fast, and consequently flight costs associated with increases in body parasite drag dominate over those of weight support, leading to an improvement in mass-specific flight economy. We propose that the relatively small absolute aerodynamic penalty for carrying enlarged fuel stores and flight muscles during fast flight has helped to select for the evolution of long-distance migration.
Journal Article
The trans-Himalayan flights of bar-headed geese (Anser indicus)
by
Milsom, William K.
,
Scott, Graham R.
,
Newman, Scott H.
in
Aerial locomotion
,
Altitude
,
Animal Migration - physiology
2011
Birds that fly over mountain barriers must be capable of meeting the increased energetic cost of climbing in low-density air, even though less oxygen may be available to support their metabolism. This challenge is magnified by the reduction in maximum sustained climbing rates in large birds. Bar-headed geese (Anser indicus) make one of the highest and most iconic transmountain migrations in the world. We show that those populations of geese that winter at sea level in India are capable of passing over the Himalayas in 1 d, typically climbing between 4,000 and 6,000 m in 7–8 h. Surprisingly, these birds do not rely on the assistance of upslope tailwinds that usually occur during the day and can support minimum climb rates of 0.8–2.2 km·h –1 , even in the relative stillness of the night. They appear to strategically avoid higher speed winds during the afternoon, thus maximizing safety and control during flight. It would seem, therefore, that bar-headed geese are capable of sustained climbing flight over the passes of the Himalaya under their own aerobic power.
Journal Article
Eco-Virological Approach for Assessing the Role of Wild Birds in the Spread of Avian Influenza H5N1 along the Central Asian Flyway
2012
A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this 'thoroughfare'. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005-2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations.
Journal Article
Age-Related Variation in Foraging Behaviour in the Wandering Albatross at South Georgia: No Evidence for Senescence
2015
Age-related variation in demographic rates is now widely documented in wild vertebrate systems, and has significant consequences for population and evolutionary dynamics. However, the mechanisms underpinning such variation, particularly in later life, are less well understood. Foraging efficiency is a key determinant of fitness, with implications for individual life history trade-offs. A variety of faculties known to decline in old age, such as muscular function and visual acuity, are likely to influence foraging performance. We examine age-related variation in the foraging behaviour of a long-lived, wide-ranging oceanic seabird, the wandering albatross Diomedea exulans. Using miniaturised tracking technologies, we compared foraging trip characteristics of birds breeding at Bird Island, South Georgia. Based on movement and immersion data collected during the incubation phase of a single breeding season, and from extensive tracking data collected in previous years from different stages of the breeding cycle, we found limited evidence for age-related variation in commonly reported trip parameters, and failed to detect signs of senescent decline. Our results contrast with the limited number of past studies that have examined foraging behaviour in later life, since these have documented changes in performance consistent with senescence. This highlights the importance of studies across different wild animal populations to gain a broader perspective on the processes driving variation in ageing rates.
Journal Article
Maximum Running Speed of Captive Bar-Headed Geese Is Unaffected by Severe Hypoxia
by
Milsom, William K.
,
Scott, Graham R.
,
Bishop, Charles M.
in
Altitude
,
Analysis
,
Animal behavior
2014
While bar-headed geese are renowned for migration at high altitude over the Himalayas, previous work on captive birds suggested that these geese are unable to maintain rates of oxygen consumption while running in severely hypoxic conditions. To investigate this paradox, we re-examined the running performance and heart rates of bar-headed geese and barnacle geese (a low altitude species) during exercise in hypoxia. Bar-headed geese (n = 7) were able to run at maximum speeds (determined in normoxia) for 15 minutes in severe hypoxia (7% O2; simulating the hypoxia at 8500 m) with mean heart rates of 466±8 beats min-1. Barnacle geese (n = 10), on the other hand, were unable to complete similar trials in severe hypoxia and their mean heart rate (316 beats.min-1) was significantly lower than bar-headed geese. In bar-headed geese, partial pressures of oxygen and carbon dioxide in both arterial and mixed venous blood were significantly lower during hypoxia than normoxia, both at rest and while running. However, measurements of blood lactate in bar-headed geese suggested that anaerobic metabolism was not a major energy source during running in hypoxia. We combined these data with values taken from the literature to estimate (i) oxygen supply, using the Fick equation and (ii) oxygen demand using aerodynamic theory for bar-headed geese flying aerobically, and under their own power, at altitude. This analysis predicts that the maximum altitude at which geese can transport enough oxygen to fly without environmental assistance ranges from 6,800 m to 8,900 m altitude, depending on the parameters used in the model but that such flights should be rare.
Journal Article
Hibernation in an Antarctic Fish: On Ice for Winter
by
Peck, Lloyd S.
,
Egginton, Stuart
,
Campbell, Hamish A.
in
Acclimatization - physiology
,
Amphibia
,
Amphibians
2008
Active metabolic suppression in anticipation of winter conditions has been demonstrated in species of mammals, birds, reptiles and amphibians, but not fish. This is because the reduction in metabolic rate in fish is directly proportional to the decrease in water temperature and they appear to be incapable of further suppressing their metabolic rate independently of temperature. However, the Antarctic fish (Notothenia coriiceps) is unusual because it undergoes winter metabolic suppression irrespective of water temperature. We assessed the seasonal ecological strategy by monitoring swimming activity, growth, feeding and heart rate (f(H)) in N. coriiceps as they free-ranged within sub-zero waters. The metabolic rate of wild fish was extrapolated from f(H )recordings, from oxygen consumption calibrations established in the laboratory prior to fish release. Throughout the summer months N. coriiceps spent a considerable proportion of its time foraging, resulting in a growth rate (G(w)) of 0.18 +/- 0.2% day(-1). In contrast, during winter much of the time was spent sedentary within a refuge and fish showed a net loss in G(w) (-0.05 +/- 0.05% day(-1)). Whilst inactive during winter, N. coriiceps displayed a very low f(H), reduced sensory and motor capabilities, and standard metabolic rate was one third lower than in summer. In a similar manner to other hibernating species, dormancy was interrupted with periodic arousals. These arousals, which lasted a few hours, occurred every 4-12 days. During arousal activity, f(H) and metabolism increased to summer levels. This endogenous suppression and activation of metabolic processes, independent of body temperature, demonstrates that N. coriiceps were effectively 'putting themselves on ice' during winter months until food resources improved. This study demonstrates that at least some fish species can enter a dormant state similar to hibernation that is not temperature driven and presumably provides seasonal energetic benefits.
Journal Article
Helping effort increases with relatedness in bell miners, but ‘unrelated’ helpers of both sexes still provide substantial care
by
McDonald, Paul G.
,
Kazem, Anahita J. N.
,
Bishop, Charles M.
in
Animal nesting
,
Animals
,
Aviculture
2010
Indirect fitness benefits from kin selection can explain why non-breeding individuals help raise the young of relatives. However, the evolution of helping by non-relatives requires direct fitness benefits, for example via group augmentation. Here, we examine nest visit rates, load sizes and prey types delivered by breeding pairs and their helpers in the cooperatively breeding bell miner (Manorina melanophrys). In this system, males remain in their natal colony while young females typically disperse, and helpers of both sexes often assist at multiple nests concurrently. We found extremely clear evidence for the expected effect of genetic relatedness on individual helping effort per nest within colonies. This positive incremental effect of kinship was facultative-i.e. largely the result of within-individual variation in helping effort. Surprisingly, no sex differences were detectable in any aspect of helping, and even non-relatives provided substantial aid. Helpers and breeders of both sexes regulated their provisioning effort by responding visit-by-visit to changes in nestling begging. Helping behaviour in bell miners therefore appears consistent with adaptive cooperative investment in the brood, and kin-selected care by relatives. Similar investment by 'unrelated' helpers of both sexes argues against direct fitness benefits, but is perhaps explained by kin selection at the colony level.
Journal Article
The maximum oxygen consumption and aerobic scope of birds and mammals: getting to the heart of the matter
1999
Resting or basal metabolic rates, compared across a wide range of organisms, scale with respect to body mass as approximately the 0.75 power. This relationship has recently been linked to the fractal geometry of the appropriate transport system or, in the case of birds and mammals, the blood vascular system. However, the structural features of the blood vascular system should more closely reflect maximal aerobic metabolic rates rather than submaximal function. Thus, the maximal aerobic metabolic rates of birds and mammals should also scale as approximately the 0.75 power. A review of the literature on maximal oxygen consumption and factorial aerobic scope (maximum oxygen consumption divided by basal metabolic rate) suggests that body mass influences the capacity of the cardiovascular system to raise metabolic rates above those at rest. The results show that the maximum sustainable metabolic rates of both birds and mammals are similar and scale as approximately the 0.88±0.02 power of body mass (and aerobic scope as approximately the 0.15±0.05 power), when the measurements are standardized with respect to the differences in relative heart mass and haemoglobin concentration between species. The maximum heart beat frequency of birds and mammals is predicted to scale as the -0.12±0.02 power of body mass, while that at rest should scale as -0.27±0.04.
Journal Article
Microhabitat selection by sea turtles in a dynamic thermal marine environment
by
Dimopoulos, Panayotis
,
Hays, Graeme C.
,
Schofield, Gail
in
Amphibia. Reptilia
,
Animal and plant ecology
,
Animal ecology
2009
1. Reproductive fitness is often compromised at the margins of a species' range due to sub-optimal conditions. 2. Set against this backdrop, the Mediterranean's largest loggerhead sea turtle (Caretta caretta) rookery at Zakynthos (Greece) presents a conundrum, being at a very high latitude for this species, yet hosting a high concentration of nesting. 3. We used visual surveys combined with global positioning system (GPS) tracking to show that at the start of the breeding season, individuals showed microhabitat selection, with females residing in transient patches of warm water. As the sea warmed in the summer, this selection was no longer evident. 4. As loggerhead turtles are ectothermic, this early season warm-water selection presumably speeds up egg maturation rates before oviposition, thereby allowing more clutches to be incubated when sand conditions are optimal during the summer. 5. Active selection of warm waters may allow turtles to initiate nesting at an earlier date.
Journal Article
Do Bar-Headed Geese Train for High Altitude Flights?
by
Parr, Nicole
,
Milsom, William K.
,
Scott, Graham R.
in
Altitude
,
Animal Migration - physiology
,
Animals
2017
Exercise at high altitude is extremely challenging, largely due to hypobaric hypoxia (low oxygen levels brought about by low air pressure). In humans, the maximal rate of oxygen consumption decreases with increasing altitude, supporting progressively poorer performance. Bar-headed geese (Anser indicus) are renowned high altitude migrants and, although they appear to minimize altitude during migration where possible, they must fly over the Tibetan Plateau (mean altitude 4800 m) for much of their annual migration. This requires considerable cardiovascular effort, but no study has assessed the extent to which bar-headed geese may train prior to migration for long distances, or for high altitudes. Using implanted loggers that recorded heart rate, acceleration, pressure, and temperature, we found no evidence of training for migration in bar-headed geese. Geese showed no significant change in summed activity per day or maximal activity per day. There was also no significant change in maximum heart rate per day or minimum resting heart rate, which may be evidence of an increase in cardiac stroke volume if all other variables were to remain the same. We discuss the strategies used by bar-headed geese in the context of training undertaken by human mountaineers when preparing for high altitude, noting the differences between their respective cardiovascular physiology.
Journal Article