Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10
result(s) for
"Biswanath, Santoshi"
Sort by:
Human heart-forming organoids recapitulate early heart and foregut development
by
Schenke-Layland, Katja
,
Zweigerdt, Robert
,
Nolte, Lena
in
631/136/532/2064
,
631/136/756
,
Agriculture
2021
Organoid models of early tissue development have been produced for the intestine, brain, kidney and other organs, but similar approaches for the heart have been lacking. Here we generate complex, highly structured, three-dimensional heart-forming organoids (HFOs) by embedding human pluripotent stem cell aggregates in Matrigel followed by directed cardiac differentiation via biphasic WNT pathway modulation with small molecules. HFOs are composed of a myocardial layer lined by endocardial-like cells and surrounded by septum-transversum-like anlagen; they further contain spatially and molecularly distinct anterior versus posterior foregut endoderm tissues and a vascular network. The architecture of HFOs closely resembles aspects of early native heart anlagen before heart tube formation, which is known to require an interplay with foregut endoderm development. We apply HFOs to study genetic defects in vitro by demonstrating that
NKX2.5
-knockout HFOs show a phenotype reminiscent of cardiac malformations previously observed in transgenic mice.
Heart-forming organoids model early cardiac development.
Journal Article
Femtosecond laser-based nanosurgery reveals the endogenous regeneration of single Z-discs including physiological consequences for cardiomyocytes
2019
A highly organized cytoskeleton architecture is the basis for continuous and controlled contraction in cardiomyocytes (CMs). Abnormalities in cytoskeletal elements, like the Z-disc, are linked to several diseases. It is challenging to reveal the mechanisms of CM failure, endogenous repair, or mechanical homeostasis on the scale of single cytoskeletal elements. Here, we used a femtosecond (fs) laser to ablate single Z-discs in human pluripotent stem cells (hPSC) -derived CMs (hPSC-CM) and neonatal rat CMs. We show, that CM viability was unaffected by the loss of a single Z-disc. Furthermore, more than 40% of neonatal rat and 68% of hPSC-CMs recovered the Z-disc loss within 24 h. Significant differences to control cells, after the Z-disc loss, in terms of cell perimeter, x- and y-expansion and calcium homeostasis were not found. Only 14 days
in vitro
old hPSC-CMs reacted with a significant decrease in cell area, x- and y-expansion 24 h past nanosurgery. This demonstrates that CMs can compensate the loss of a single Z-disc and recover a regular sarcomeric pattern during spontaneous contraction. It also highlights the significant potential of fs laser-based nanosurgery to physically micro manipulate CMs to investigate cytoskeletal functions and organization of single elements.
Journal Article
Generation of heart-forming organoids from human pluripotent stem cells
by
Zweigerdt, Robert
,
Drakhlis, Lika
,
Devadas, Santoshi Biswanath
in
631/136/532/2064
,
631/136/756/1462
,
631/136/756/1640
2021
Heart-forming organoids (HFOs) derived from human pluripotent stem cells (hPSCs) are a complex, highly structured in vitro model of early heart, foregut and vasculature development. The model represents a potent tool for various applications, including teratogenicity studies, gene function analysis and drug discovery. Here, we provide a detailed protocol describing how to form HFOs within 14 d. In an initial 4 d preculture period, hPSC aggregates are individually formed in a 96-well format and then Matrigel-embedded. Subsequently, the chemical WNT pathway modulators CHIR99021 and IWP2 are applied, inducing directed differentiation. This highly robust protocol can be used on many different hPSC lines and be combined with manipulation technologies such as gene targeting and drug testing. HFO formation can be assessed by numerous complementary methods, ranging from various imaging approaches to gene expression studies. Here, we highlight the flow cytometry-based analysis of individual HFOs, enabling the quantitative monitoring of lineage formation.
Human pluripotent stem cell aggregates are formed, embedded in Matrigel and directed to differentiate to heart-forming organoids by the chemical WNT pathway modulators CHIR99021 and IWP2.
Journal Article
How Localized Z-Disc Damage Affects Force Generation and Gene Expression in Cardiomyocytes
2021
The proper function of cardiomyocytes (CMs) is highly related to the Z-disc, which has a pivotal role in orchestrating the sarcomeric cytoskeletal function. To better understand Z-disc related cardiomyopathies, novel models of Z-disc damage have to be developed. Human pluripotent stem cell (hPSC)-derived CMs can serve as an in vitro model to better understand the sarcomeric cytoskeleton. A femtosecond laser system can be applied for localized and defined damage application within cells as single Z-discs can be removed. We have investigated the changes in force generation via traction force microscopy, and in gene expression after Z-disc manipulation in hPSC-derived CMs. We observed a significant weakening of force generation after removal of a Z-disc. However, no significant changes of the number of contractions after manipulation were detected. The stress related gene NF-kB was significantly upregulated. Additionally, α-actinin (ACTN2) and filamin-C (FLNc) were upregulated, pointing to remodeling of the Z-disc and the sarcomeric cytoskeleton. Ultimately, cardiac troponin I (TNNI3) and cardiac muscle troponin T (TNNT2) were significantly downregulated. Our results allow a better understanding of transcriptional coupling of Z-disc damage and the relation of damage to force generation and can therefore finally pave the way to novel therapies of sarcomeric disorders.
Journal Article
Generation of heart-forming organoids from human pluripotent stem cells
by
Zweigerdt, Robert
,
Devadas, Santoshi Biswanath
,
Drakhlis, Lika
in
Artificial organs
,
Cardiovascular research
,
Cell culture
2021
Heart-forming organoids (HFOs) derived from human pluripotent stem cells (hPSCs) are a complex, highly structured in vitro model of early heart, foregut and vasculature development. The model represents a potent tool for various applications, including teratogenicity studies, gene function analysis and drug discovery. Here, we provide a detailed protocol describing how to form HFOs within 14 d. In an initial 4 d preculture period, hPSC aggregates are individually formed in a 96-well format and then Matrigel-embedded. Subsequently, the chemical WNT pathway modulators CHIR99021 and IWP2 are applied, inducing directed differentiation. This highly robust protocol can be used on many different hPSC lines and be combined with manipulation technologies such as gene targeting and drug testing. HFO formation can be assessed by numerous complementary methods, ranging from various imaging approaches to gene expression studies. Here, we highlight the flow cytometry-based analysis of individual HFOs, enabling the quantitative monitoring of lineage formation.
Journal Article
Human heart-forming organoids recapitulate early heart and foregut development
by
Schenke-Layland, Katja
,
Nolte, Lena
,
Lupanow, Victoria
in
Heart
,
Intestines
,
Physiological aspects
2021
Organoid models of early tissue development have been produced for the intestine, brain, kidney and other organs, but similar approaches for the heart have been lacking. Here we generate complex, highly structured, three-dimensional heart-forming organoids (HFOs) by embedding human pluripotent stem cell aggregates in Matrigel followed by directed cardiac differentiation via biphasic WNT pathway modulation with small molecules. HFOs are composed of a myocardial layer lined by endocardial-like cells and surrounded by septum-transversum-like anlagen; they further contain spatially and molecularly distinct anterior versus posterior foregut endoderm tissues and a vascular network. The architecture of HFOs closely resembles aspects of early native heart anlagen before heart tube formation, which is known to require an interplay with foregut endoderm development. We apply HFOs to study genetic defects in vitro by demonstrating that NKX2.5-knockout HFOs show a phenotype reminiscent of cardiac malformations previously observed in transgenic mice.
Journal Article
Human heart-forming organoids recapitulate early heart and foregut development
by
Schenke-Layland, Katja
,
Nolte, Lena
,
Lupanow, Victoria
in
Heart
,
Intestines
,
Physiological aspects
2021
Organoid models of early tissue development have been produced for the intestine, brain, kidney and other organs, but similar approaches for the heart have been lacking. Here we generate complex, highly structured, three-dimensional heart-forming organoids (HFOs) by embedding human pluripotent stem cell aggregates in Matrigel followed by directed cardiac differentiation via biphasic WNT pathway modulation with small molecules. HFOs are composed of a myocardial layer lined by endocardial-like cells and surrounded by septum-transversum-like anlagen; they further contain spatially and molecularly distinct anterior versus posterior foregut endoderm tissues and a vascular network. The architecture of HFOs closely resembles aspects of early native heart anlagen before heart tube formation, which is known to require an interplay with foregut endoderm development. We apply HFOs to study genetic defects in vitro by demonstrating that NKX2.5-knockout HFOs show a phenotype reminiscent of cardiac malformations previously observed in transgenic mice.
Journal Article