Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
60 result(s) for "Blachly, James S."
Sort by:
Expression and prognostic impact of lncRNAs in acute myeloid leukemia
Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides, located within the intergenic stretches or overlapping antisense transcripts of protein coding genes. LncRNAs are involved in numerous biological roles including imprinting, epigenetic regulation, apoptosis, and cell cycle. To determine whether lncRNAs are associated with clinical features and recurrent mutations in older patients (aged ≥60 y) with cytogenetically normal (CN) acute myeloid leukemia (AML), we evaluated lncRNA expression in 148 untreated older CN-AML cases using a custom microarray platform. An independent set of 71 untreated older patients with CN-AML was used to validate the outcome scores using RNA sequencing. Distinctive lncRNA profiles were found associated with selected mutations, such as internal tandem duplications in the FLT3 gene ( FLT3 -ITD) and mutations in the NPM1 , CEBPA , IDH2 , ASXL1 , and RUNX1 genes. Using the lncRNAs most associated with event-free survival in a training cohort of 148 older patients with CN-AML, we derived a lncRNA score composed of 48 lncRNAs. Patients with an unfavorable compared with favorable lncRNA score had a lower complete response (CR) rate [ P < 0.001, odds ratio = 0.14, 54% vs. 89%], shorter disease-free survival (DFS) [ P < 0.001, hazard ratio (HR) = 2.88] and overall survival (OS) ( P < 0.001, HR = 2.95). The validation set analyses confirmed these results (CR, P = 0.03; DFS, P = 0.009; OS, P = 0.009). Multivariable analyses for CR, DFS, and OS identified the lncRNA score as an independent marker for outcome. In conclusion, lncRNA expression in AML is closely associated with recurrent mutations. A small subset of lncRNAs is correlated strongly with treatment response and survival. Significance Long noncoding RNAs (lncRNAs) are involved in numerous biological roles including epigenetic regulation, apoptosis, and cell cycle. Whereas lncRNAs contribute to epigenetic gene regulation, metastasis, and prognosis in solid tumors, their role in acute myeloid leukemia (AML) has not been hitherto reported. Here, we show that lncRNA expression profiles are associated with recurrent mutations, clinical features, and outcome in AML. A fraction of these lncRNAs may have a functional role in leukemogenesis. Furthermore, lncRNAs could be used as biomarkers for outcome in AML. The identification of patients likely to achieve complete remission with standard therapy alone, based on lncRNA expression, is a significant advance potentially sparing such patients from other toxicities and focusing investigational approaches on postremission studies.
Synergistic effect of BCL2 and FLT3 co-inhibition in acute myeloid leukemia
Acute myeloid leukemia (AML) is a heterogeneous and complex disease, and treatments for this disease have not been curative for the majority of patients. In younger patients, internal tandem duplication of FLT3 ( FLT3 -ITD) is a common mutation for which two inhibitors (midostaurin and gilteritinib) with varied potency and specificity for FLT3 are clinically approved. However, the high rate of relapse or failed initial response of AML patients suggests that the addition of a second targeted therapy may be necessary to improve efficacy. Using an unbiased large-scale CRISPR screen, we genetically identified BCL2 knockout as having synergistic effects with an approved FLT3 inhibitor. Here, we provide supportive studies that validate the therapeutic potential of the combination of FLT3 inhibitors with venetoclax in vitro and in vivo against multiple models of FLT3 -ITD-driven AML. Our unbiased approach provides genetic validation for co-targeting FLT3 and BCL2 and repurposes CRISPR screening data, utilizing the genome-wide scope toward mechanistic understanding.
Dysregulation of PRMT5 in chronic lymphocytic leukemia promotes progression with high risk of Richter’s transformation
Richter’s Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases. Richter’s Transformation is a treatment-resistant and fatal progression from Chronic Lymphocytic Leukemia (CLL) to an aggressive lymphoma. Here, the authors show that PRMT5 is upregulated months prior to and after transformation, PRMT5 overexpression in a CLL mouse model leads to increased risk of transformation, and that targeted PRMT5 inhibition prolongs survival and delays disease development.
NF1 mutations are recurrent in adult acute myeloid leukemia and confer poor outcome
Targeted mutation assessment of 81 genes in 1021 adults with de novo acute myeloid leukemia (AML) identified recurrent mutations in the neurofibromin 1 (NF1) gene in 52 (5.1%) patients, including 36 (5.2%) younger and 16 (4.8%) older patients, which suggests NF1 belongs to the 20 most frequently mutated genes in adult AML. NF1 mutations were found throughout the gene, and comprised missense, frameshift, and nonsense mutations. One mutation hotspot, at amino acid threonine 676 (Thr676), was found in 27% of AML patients with NF1 mutations. NF1-mutated patients belonged more often to the adverse European LeukemiaNet (ELN) risk category than NF1 wild-type patients. Among patients aged <60 years, the presence of NF1 Thr676 mutations was associated with lower complete remission (CR) rates (P = 0.04) and shorter overall survival (OS; P = 0.01), as was the presence of any NF1 mutation in patients in the adverse ELN risk category (CR, P = 0.05; OS, P < 0.001). CR rates were also lower in NF1-mutated patients aged ≥60 years compared with NF1 wild-type patients (P = 0.001). In summary, our findings provide novel insights into the frequency of NF1 mutations in AML, and are suggestive of an adverse prognostic impact in patients treated with standard chemotherapy.
Rare t(X;14)(q28;q32) translocation reveals link between MTCP1 and chronic lymphocytic leukemia
Rare, recurrent balanced translocations occur in a variety of cancers but are often not functionally interrogated. Balanced translocations with the immunoglobulin heavy chain locus ( IGH ; 14q32) in chronic lymphocytic leukemia (CLL) are infrequent but have led to the discovery of pathogenic genes including CCND1 , BCL2 , and BCL3 . Following identification of a t(X;14)(q28;q32) translocation that placed the mature T cell proliferation 1 gene ( MTCP1 ) adjacent to the immunoglobulin locus in a CLL patient, we hypothesized that this gene may have previously unrecognized importance. Indeed, here we report overexpression of human MTCP1 restricted to the B cell compartment in mice produces a clonal CD5 + /CD19 + leukemia recapitulating the major characteristics of human CLL and demonstrates favorable response to therapeutic intervention with ibrutinib. We reinforce the importance of genetic interrogation of rare, recurrent balanced translocations to identify cancer driving genes via the story of MTCP1 as a contributor to CLL pathogenesis. Some genes that are part of balanced translocations are reported as drivers for tumourigenesis. Here, the authors report a translocation involving MTCP1 in chronic lymphocytic leukemia and show that MTCP1 overexpression leads to the disease in a murine model.
Consensus opinion from an international group of experts on measurable residual disease in hairy cell leukemia
A significant body of literature has been generated related to the detection of measurable residual disease (MRD) at the time of achieving complete remission (CR) in patients with hairy cell leukemia (HCL). However, due to the indolent nature of the disease as well as reports suggesting long-term survival in patients treated with a single course of a nucleoside analog albeit without evidence of cure, the merits of detection of MRD and attempts to eradicate it have been debated. Studies utilizing novel strategies in the relapse setting have demonstrated the utility of achieving CR with undetectable MRD (uMRD) in prolonging the duration of remission. Several assays including immunohistochemical analysis of bone marrow specimens, multi-parameter flow cytometry and molecular assays to detect the mutant BRAF V600E gene or the consensus primer for the immunoglobulin heavy chain gene (IGH) rearrangement have been utilized with few comparative studies. Here we provide a consensus report on the available data, the potential merits of MRD assessment in the front-line and relapse settings and recommendations on future role of MRD assessment in HCL.
Immunoglobulin transcript sequence and somatic hypermutation computation from unselected RNA-seq reads in chronic lymphocytic leukemia
Significance IGHV mutation status is a well established prognostic factor in chronic lymphocytic leukemia, and also provides crucial insights into tumor cell biology and function. Currently, determination of IGHV transcript sequence, from which mutation status is calculated, requires a specialized laboratory procedure. RNA sequencing is a method that provides high resolution, high dynamic range transcriptome data that can be used for differential expression, isoform discovery, and variant determination. In this paper, we demonstrate that unselected next-generation RNA sequencing can accurately determine the IGH@ sequence, including the complete sequence of the complementarity-determining region 3 (CDR3), and mutation status of CLL cells, potentially replacing the current method which is a specialized, single-purpose Sanger-sequencing based test. Immunoglobulins (Ig) are produced by B lymphocytes as secreted antibodies or as part of the B-cell receptor. There is tremendous diversity of potential Ig transcripts (>1 × 10 ¹²) as a result of hundreds of germ-line gene segments, random nucleotide incorporation during joining of gene segments into a complete transcript, and the process of somatic hypermutation at individual nucleotides. This recombination and mutation process takes place in the maturing B cell and is responsible for the diversity of potential epitope recognition. Cancers arising from mature B cells are characterized by clonal production of Ig heavy ( IGH@ ) and light chain transcripts, although whether the sequence has undergone somatic hypermutation is dependent on the maturation stage at which the neoplastic clone arose. Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults and arises from a mature B cell with either mutated or unmutated IGH@ transcripts, the latter having worse prognosis and the assessment of which is routinely performed in the clinic. Currently, IGHV mutation status is assessed by Sanger sequencing and comparing the transcript to known germ-line genes. In this paper, we demonstrate that complete IGH@ V-D-J sequences can be computed from unselected RNA-seq reads with results equal or superior to the clinical procedure: in the only discordant case, the clinical transcript was out-of-frame. Therefore, a single RNA-seq assay can simultaneously yield gene expression profile, SNP and mutation information, as well as IGHV mutation status, and may one day be performed as a general test to capture multidimensional clinically relevant data in CLL.
A precision medicine classification for treatment of acute myeloid leukemia in older patients
Background Older patients (≥ 60 years) with acute myeloid leukemia (AML) often have multiple, sequentially acquired, somatic mutations that drive leukemogenesis and are associated with poor outcome. Beat AML is a Leukemia and Lymphoma Society-sponsored, multicenter umbrella study that algorithmically segregates AML patients based upon cytogenetic and dominant molecular abnormalities (variant allele frequencies (VAF) ≥ 0.2) into different cohorts to select for targeted therapies. During the conception of the Beat AML design, a historical dataset was needed to help in the design of the genomic algorithm for patient assignment and serve as the basis for the statistical design of individual genomic treatment substudies for the Beat AML study. Methods We classified 563 newly diagnosed older AML patients treated with standard intensive chemotherapy on trials conducted by Cancer and Leukemia Group B based on the same genomic algorithm and assessed clinical outcomes. Results Our classification identified core-binding factor and NPM1 -mutated/ FLT3 -ITD-negative groups as having the best outcomes, with 30-day early death (ED) rates of 0 and 20%, respectively, and median overall survival (OS) of > 1 year and 3-year OS rates of ≥ 20%. All other genomic groups had ED rates of 17–42%, median OS ≤ 1 year and 3-year OS rates of ≤ 15%. Conclusions By classifying patients through this genomic algorithm, outcomes were poor and not unexpected from a non-algorithmic, non-dominant VAF approach. The exception is 30-day ED rate typically is not available for intensive induction for individual genomic groups and therefore difficult to compare outcomes with targeted therapeutics. This Alliance data supported the use of this algorithm for patient assignment at the initiation of the Beat AML study. This outcome data was also used for statistical design for Beat AML substudies for individual genomic groups to determine goals for improvement from intensive induction and hopefully lead to more rapid approval of new therapies. Trial registration ClinicalTrials.gov Identifiers: NCT00048958 (CALGB 8461), NCT00900224 (CALGB 20202), NCT00003190 (CALGB 9720), NCT00085124 (CALGB 10201), NCT00742625 (CALGB 10502), NCT01420926 (CALGB 11002), NCT00039377 (CALGB 10801), and NCT01253070 (CALGB 11001).
Incidence, description, and timing of serious and opportunistic infections in patients with hairy cell leukemia
Hairy cell leukemia is an uncommon B‐cell malignancy with excellent response to purine analogs and to targeted therapies such as ibrutinib and vemurafenib. However, purine analogs are known to be highly immunosuppressive and the infection burden in this patient population with current therapies is unknown. We therefore conducted a retrospective cohort study following 149 patients. Median follow‐up time was 6.9 years. Thirty‐six percent developed an opportunistic or serious infection requiring hospitalization. Most cases were bacterial and most coincided with neutropenia and/or CD4 T‐lymphopenia. No single treatment agent was significantly associated with increased or decreased incidence of infection. Reassuringly, the cumulative incidence of infections plateaued 2 months after initial treatment suggesting clinically significant immune recovery. Only one patient in our cohort passed away due to infection. Estimated 10‐year overall survival was 99% suggesting that infections may not cause as much mortality as was seen prior to current therapies.
Single‐center study of outcomes of patients with hairy cell leukemia who contracted SARS‐CoV‐2
Baseline characteristics (N = 14) Age at HCL diagnosis, median (range) 47 (23–67) Sex, n (%) Female 4 (28.6) Male 10 (71.4) COVID-19 diagnosis and vaccination status Vaccinated, n (%) No 3 (21.4) Yes 11 (78.6) First vaccination before positive COVID-19 testing 5 (35.7) First vaccination after positive COVID-19 testing 6 (42.9) Vaccination dose and type, n (%) (n = 11) One dose: The majority of patients in our cohort received COVID-19-directed treatment, which likely improved outcomes. [...]physicians should consider early treatment of COVID-19 with the best available therapies in HCL patients. CONFLICT OF INTEREST STATEMENT James Blachly: AbbVie, AstraZeneca, Astellas, MingSight, patent on a leukemia diagnostic device, patent pending on a leukemia classification scheme.