Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14
result(s) for
"Blais, Edik M."
Sort by:
Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the Know Your Tumor registry trial
2020
About 25% of pancreatic cancers harbour actionable molecular alterations, defined as molecular alterations for which there is clinical or strong preclinical evidence of a predictive benefit from a specific therapy. The Know Your Tumor (KYT) programme includes US patients with pancreatic cancer and enables patients to undergo commercially available multi-omic profiling to provide molecularly tailored therapy options and clinical trial recommendations. We sought to determine whether patients with pancreatic cancer whose tumours harboured such actionable molecular alterations and who received molecularly matched therapy had a longer median overall survival than similar patients who did not receive molecularly matched therapy.
In this retrospective analysis, treatment history and longitudinal survival outcomes were analysed in patients aged 18 years or older with biopsy-confirmed pancreatic cancer of any stage, enrolled in the KYT programme and who received molecular testing results. Since the timing of KYT enrolment varied for each patient, the primary outcome measurement of median overall survival was calculated from the initial diagnosis of advanced disease until death. We compared median overall survival in patients with actionable mutations who were treated with a matched therapy versus those who were not treated with a matched therapy.
Of 1856 patients with pancreatic cancer who were referred to the KYT programme between June 16, 2014, and March 31, 2019, 1082 (58%) patients received personalised reports based on their molecular testing results. Actionable molecular alterations were identified in 282 (26%) of 1082 samples. Among 677 patients for whom outcomes were available, 189 had actionable molecular alterations. With a median follow-up of 383 days (IQR 214–588), those patients with actionable molecular alterations who received a matched therapy (n=46) had significantly longer median overall survival than did those patients who only received unmatched therapies (n=143; 2·58 years [95% CI 2·39 to not reached] vs 1·51 years [1·33–1·87]; hazard ratio 0·42 [95% CI 0·26–0·68], p=0·0004). The 46 patients who received a matched therapy also had significantly longer overall survival than the 488 patients who did not have an actionable molecular alteration (2·58 years [95% CI 2·39 to not reached] vs 1·32 years [1·25–1·47]; HR 0·34 [95% CI 0·22–0·53], p<0·0001). However, median overall survival did not differ between the patients who received unmatched therapy and those without an actionable molecular alteration (HR 0·82 [95% CI 0·64–1·04], p=0·10).
These real-world outcomes suggest that the adoption of precision medicine can have a substantial effect on survival in patients with pancreatic cancer, and that molecularly guided treatments targeting oncogenic drivers and the DNA damage response and repair pathway warrant further prospective evaluation.
Pancreatic Cancer Action Network and Perthera.
Journal Article
Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions
2017
The laboratory rat has been used as a surrogate to study human biology for more than a century. Here we present the first genome-scale network reconstruction of
Rattus norvegicus
metabolism,
iRno
, and a significantly improved reconstruction of human metabolism,
iHsa
. These curated models comprehensively capture metabolic features known to distinguish rats from humans including vitamin C and bile acid synthesis pathways. After reconciling network differences between
iRno
and
iHsa
, we integrate toxicogenomics data from rat and human hepatocytes, to generate biomarker predictions in response to 76 drugs. We validate comparative predictions for xanthine derivatives with new experimental data and literature-based evidence delineating metabolite biomarkers unique to humans. Our results provide mechanistic insights into species-specific metabolism and facilitate the selection of biomarkers consistent with rat and human biology. These models can serve as powerful computational platforms for contextualizing experimental data and making functional predictions for clinical and basic science applications.
The rat is a widely-used model for human biology, but we must be aware of metabolic differences. Here, the authors reconstruct the genome-scale metabolic network of the rat, and after reconciling it with an improved human metabolic model, demonstrate the power of the models to integrate toxicogenomics data, providing species-specific biomarker predictions in response to a panel of drugs.
Journal Article
Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix
by
Stashko, Connor
,
Pishvaian, Michael J.
,
Hollingsworth, Michael
in
Adenocarcinoma
,
Aged
,
Analysis
2020
Desmoplasia describes the deposition of extensive extracellular matrix and defines primary pancreatic ductal adenocarcinoma (PDA). The acellular component of this stroma has been implicated in PDA pathogenesis and is being targeted therapeutically in clinical trials. By analyzing the stromal content of PDA samples from numerous annotated PDA data sets and correlating stromal content with both anatomic site and clinical outcome, we found PDA metastases in the liver, the primary cause of mortality to have less stroma, have higher tumor cellularity than primary tumors. Experimentally manipulating stromal matrix with an anti-lysyl oxidase like-2 (anti-LOXL2) antibody in syngeneic orthotopic PDA mouse models significantly decreased matrix content, led to lower tissue stiffness, lower contrast retention on computed tomography, and accelerated tumor growth, resulting in diminished overall survival. These studies suggest an important protective role of stroma in PDA and urge caution in clinically deploying stromal depletion strategies.
Journal Article
Clinical, Molecular and Genetic Validation of a Murine Orthotopic Xenograft Model of Pancreatic Adenocarcinoma Using Fresh Human Specimens
by
Stokes, Jayme B.
,
Lee, Jae K.
,
Papin, Jason A.
in
Adenocarcinoma
,
Adenocarcinoma - genetics
,
Adenocarcinoma - metabolism
2013
Relevant preclinical models that recapitulate the key features of human pancreatic ductal adenocarcinoma (PDAC) are needed in order to provide biologically tractable models to probe disease progression and therapeutic responses and ultimately improve patient outcomes for this disease. Here, we describe the establishment and clinical, pathological, molecular and genetic validation of a murine, orthotopic xenograft model of PDAC.
Human PDACs were resected and orthotopically implanted and propagated in immunocompromised mice. Patient survival was correlated with xenograft growth and metastatic rate in mice. Human and mouse tumor pathology were compared. Tumors were analyzed for genetic mutations, gene expression, receptor tyrosine kinase activation, and cytokine expression.
Fifteen human PDACs were propagated orthotopically in mice. Xenograft-bearing mice developed peritoneal and liver metastases. Time to tumor growth and metastatic efficiency in mice each correlated with patient survival. Tumor architecture, nuclear grade and stromal content were similar in patient and xenografted tumors. Propagated tumors closely exhibited the genetic and molecular features known to characterize pancreatic cancer (e.g. high rate of KRAS, P53, SMAD4 mutation and EGFR activation). The correlation coefficient of gene expression between patient tumors and xenografts propagated through multiple generations was 93 to 99%. Analysis of gene expression demonstrated distinct differences between xenografts from fresh patient tumors versus commercially available PDAC cell lines.
The orthotopic xenograft model derived from fresh human PDACs closely recapitulates the clinical, pathologic, genetic and molecular aspects of human disease. This model has resulted in the identification of rational therapeutic strategies to be tested in clinical trials and will permit additional therapeutic approaches and identification of biomarkers of response to therapy.
Journal Article
Matrix Rigidity Regulates Cancer Cell Growth by Modulating Cellular Metabolism and Protein Synthesis
by
Papin, Jason A.
,
Tilghman, Robert W.
,
Blais, Edik M.
in
Acrylic Resins
,
Adenosine Triphosphate - metabolism
,
Amino acids
2012
Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.
This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150-300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.
The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites.
Journal Article
A Thirteen-Gene Expression Signature Predicts Survival of Patients with Pancreatic Cancer and Identifies New Genes of Interest
by
Lee, Jae K.
,
Papin, Jason A.
,
Newhook, Timothy E.
in
Adenocarcinoma
,
Adenocarcinoma - genetics
,
Antigens
2014
Currently, prognostication for pancreatic ductal adenocarcinoma (PDAC) is based upon a coarse clinical staging system. Thus, more accurate prognostic tests are needed for PDAC patients to aid treatment decisions.
Affymetrix gene expression profiling was carried out on 15 human PDAC tumors and from the data we identified a 13-gene expression signature (risk score) that correlated with patient survival. The gene expression risk score was then independently validated using published gene expression data and survival data for an additional 101 patients with pancreatic cancer. Patients with high-risk scores had significantly higher risk of death compared to patients with low-risk scores (HR 2.27, p = 0.002). When the 13-gene score was combined with lymph node status the risk-score further discriminated the length of patient survival time (p<0.001). Patients with a high-risk score had poor survival independent of nodal status; however, nodal status increased predictability for survival in patients with a low-risk gene signature score (low-risk N1 vs. low-risk N0: HR = 2.0, p = 0.002). While AJCC stage correlated with patient survival (p = 0.03), the 13-gene score was superior at predicting survival. Of the 13 genes comprising the predictive model, four have been shown to be important in PDAC, six are unreported in PDAC but important in other cancers, and three are unreported in any cancer.
We identified a 13-gene expression signature that predicts survival of PDAC patients and could prove useful for making treatment decisions. This risk score should be evaluated prospectively in clinical trials for prognostication and for predicting response to chemotherapy. Investigation of new genes identified in our model may lead to novel therapeutic targets.
Journal Article
Functional activation of the AKT-mTOR signalling axis in a real-world metastatic breast cancer cohort
by
Dunetz, Rick
,
Baldelli, Elisa
,
Prasad, Deepika
in
1-Phosphatidylinositol 3-kinase
,
631/67/1347
,
692/4017
2024
Background
Mutations of the
PIK3CA/AKT/mTOR
axis are common events in metastatic breast cancers (MBCs). This study was designed to evaluate the extent to which genetic alterations of the
PIK3CA/AKT/mTOR
can predict protein activation of this signalling axis in MBCs.
Methods
Molecular profiles were generated by CLIA-certified laboratories from a real-world evidence cohort of 171 MBC patients. Genetic alterations of the
PIK3CA
pathway were measured using next-generation sequencing. Activation levels of AKT and downstream signalling molecules were quantified using two orthogonal proteomic methods. Protein activity was correlated with underlying genomic profiles and response to CDK4/6 inhibition in combination with endocrine treatment (ET).
Results
Oncogenic alterations of the
PIK3CA
/
AKT
/
PTEN
pathway were identified in 49.7% of cases. Genomic profiles emerged as poor predictors of protein activity (AUC:0.69), and AKT phosphorylation levels mimicked those of mutant lesions in 76.9% of wild-type tumours. High phosphorylation levels of the PI3K/AKT/mTOR downstream target p70S6 Kinase (T389) were associated with shorter PFS in patients treated with CDK4/6 inhibitors in combination with ET (HR:4.18 95%CI:1.19–14.63); this association was not seen when patients were classified by mutational status.
Conclusions
Phosphoprotein-based measurements of drug targets and downstream substrates should be captured along with genomic information to identify MBCs driven by the PI3K/AKT/mTOR signalling.
Journal Article
Multi-omic molecular comparison of primary versus metastatic pancreatic tumours
by
Rahib, Lola
,
Pishvaian, Michael J.
,
Madhavan, Subha
in
692/53/2423
,
692/699/67/1504/1713
,
Adenocarcinoma
2019
Background
Molecular profiling is increasingly used to match patients with metastatic cancer to targeted therapies, but obtaining a high-quality biopsy specimen from metastatic sites can be difficult.
Methods
Patient samples were received by Perthera to coordinate genomic, proteomic and/or phosphoproteomic testing, using a specimen from either the primary tumour or a metastatic site. The relative frequencies were compared across specimen sites to assess the potential limitations of using a primary tumour sample for clinical decision support.
Results
No significant differences were identified at the gene or pathway level when comparing genomic alterations between primary and metastatic lesions. Site-specific trends towards enrichment of MYC amplification in liver lesions, STK11 mutations in lung lesions and ATM and ARID2 mutations in abdominal lesions were seen, but were not statistically significant after false-discovery rate correction. Comparative analyses of proteomic results revealed significantly elevated expression of ERCC1 and TOP1 in metastatic lesions.
Conclusions
Tumour tissue limitations remain a barrier to precision oncology efforts, and these real-world data suggest that performing molecular testing on a primary tumour specimen could be considered in patients with pancreatic adenocarcinoma who do not have adequate tissue readily available from a metastatic site.
Journal Article
Keratin 17 is a prognostic and predictive biomarker in pancreatic ductal adenocarcinoma
by
Matrisian, Lynn M
,
Marchenko, Natalia
,
Allard, Felicia D
in
5-Fluorouracil
,
Adenocarcinoma
,
Analysis
2024
Abstract
Objectives
To determine the role of keratin 17 (K17) as a predictive biomarker for response to chemotherapy by defining thresholds of K17 expression based on immunohistochemical tests that could be used to optimize therapeutic intervention for patients with pancreatic ductal adenocarcinoma (PDAC).
Methods
We profiled K17 expression, a hallmark of the basal molecular subtype of PDAC, by immunohistochemistry in 2 cohorts of formalin-fixed, paraffin-embedded PDACs (n = 305). We determined a K17 threshold of expression to optimize prognostic stratification according to the lowest Akaike information criterion and explored the potential relationship between K17 and chemoresistance by multivariate predictive analyses.
Results
Patients with advanced-stage, low K17 PDACs treated using 5-fluorouracil (5-FU)–based chemotherapeutic regimens had 3-fold longer survival than corresponding cases treated with gemcitabine-based chemotherapy. By contrast, PDACs with high K17 did not respond to either regimen. The predictive value of K17 was independent of tumor mutation status and other clinicopathologic variables.
Conclusions
The detection of K17 in 10% or greater of PDAC cells identified patients with shortest survival. Among patients with low K17 PDACs, 5-FU–based treatment was more likely than gemcitabine-based therapies to extend survival.
Journal Article
A virtual molecular tumor board to improve efficiency and scalability of delivering precision oncology to physicians and their patients
2019
ObjectivesScalable informatics solutions that provide molecularly tailored treatment recommendations to clinicians are needed to streamline precision oncology in care settings.Materials and MethodsWe developed a cloud-based virtual molecular tumor board (VMTB) platform that included a knowledgebase, scoring model, rules engine, an asynchronous virtual chat room and a reporting tool that generated a treatment plan for each of the 1725 patients based on their molecular profile, previous treatment history, structured trial eligibility criteria, clinically relevant cancer gene-variant assertions, biomarker-treatment associations, and current treatment guidelines. The VMTB systematically allows clinician users to combine expert-curated data and structured data from clinical charts along with molecular testing data to develop consensus on treatments, especially those that require off-label and clinical trial considerations.ResultsThe VMTB was used as part of the cancer care process for a focused subset of 1725 patients referred by advocacy organizations wherein resultant personalized reports were successfully delivered to treating oncologists. Median turnaround time from data receipt to report delivery decreased from 14 days to 4 days over 4 years while the volume of cases increased nearly 2-fold each year. Using a novel scoring model for ranking therapy options, oncologists chose to implement the VMTB-derived therapies over others, except when pursuing immunotherapy options without molecular support.DiscussionVMTBs will play an increasingly critical role in precision oncology as the compendium of biomarkers and associated therapy options available to a patient continues to expand.ConclusionFurther development of such clinical augmentation tools that systematically combine patient-derived molecular data, real-world evidence from electronic health records and expert curated knowledgebases on biomarkers with computational tools for ranking best treatments can support care pathways at point of care.
Journal Article