Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Blaschke, Oliver"
Sort by:
Quantification of Humidity and Salt Detection in Historical Building Materials via Broadband Radar Measurement
For the investigation of moisture and salt content in historic masonry, destructive drilling samples followed by a gravimetric investigation is still the preferred method. In order to prevent the destructive intrusion into the building substance and to enable a large-area measurement, a nondestructive and easy-to-use measuring principle is needed. Previous systems for moisture measurement usually fail due to a strong dependence on contained salts. In this work, a ground penetrating radar (GPR) system was used to determine the frequency-dependent complex permittivity in the range between 1 and 3 GHz on salt-loaded samples of historical building materials. By choosing this frequency range, it was possible to determine the moisture in the samples independently of the salt content. In addition, it was possible to make a quantitative statement about the salt level. The applied method demonstrates that with ground penetrating radar measurements in the frequency range selected here, a salt-independent moisture determination can be carried out.
Improved EMAT Sensor Design for Enhanced Ultrasonic Signal Detection in Steel Wire Ropes
This study is focused on optimizing electromagnetic acoustic transducer (EMAT) sensors for enhanced ultrasonic guided wave signal generation in steel cables using CAD and modern manufacturing to enable contactless ultrasonic signal transmission and reception. A lab test rig with advanced measurement and data processing was set up to test the sensors’ ability to detect cable damage, like wire breaks and abrasion, while also examining the effect of potential disruptors such as rope soiling. Machine learning algorithms were applied to improve the damage detection accuracy, leading to significant advancements in magnetostrictive measurement methods and providing a new standard for future development in this area. The use of the Vision Transformer Masked Autoencoder Architecture (ViTMAE) and generative pre-training has shown that reliable damage detection is possible despite the considerable signal fluctuations caused by rope movement.
Consistent Evaluation Methods for Microfluidic Mixers
The study presents a unifying methodology for characterizing micromixers, integrating both experimental and simulation techniques. Focusing on Dean mixer designs, it employs an optical evaluation for experiments and a modified Sobolev norm for simulations, yielding a unified dimensionless characteristic parameter for the whole mixer at a given Reynolds number. The results demonstrate consistent mixing performance trends across both methods for various operation points. This paper also proposes enhancements in the evaluation process to improve accuracy and reduce noise impact. This approach provides a valuable framework for optimizing micromixer designs, essential in advancing microfluidic technologies.
Quantification of Moisture in Masonry via AI-Evaluated Broadband Radar Reflectometry
Humidity, salt content, and migration in building materials lead to weathering and are a common challenge. To understand damage phenomena and select the right conservation treatments, knowledge on both the amount and distribution of moisture and salt load in the masonry is crucial. It was shown that commercial portable devices addressing moisture are often limited by the mutual interference of these values. This can be improved by exploiting broadband radar reflectometry for the quantification of humidity in historic masonry. Due to the above-mentioned limitations, today’s gold standard for evaluating the moisture content in historic buildings is still conducted by taking drilling samples with a subsequent evaluation in a specially designed laboratory, the so-called Darr method. In this paper, a new broadband frequency approach in the range between 0.4 and 6 GHz with improved artificial-intelligence data analysis makes sure to optimize the reflected signal, simplify the evaluation of the generated data, and minimise the effects of variables such as salt contamination that influence the permittivity. In this way, the amount of water could be determined independently from the salt content in the material and an estimate of the salt load. With new machine learning algorithms, the analysis of the permittivity is improved and can be made accessible for everyday use on building sites with minimal intervention by the user. These algorithms were trained with generated data from different drying studies on single building bricks from the masonries. The findings from the laboratory studies were then validated and evaluated on real historic buildings at real construction sites. Thus, the paper shows a spatially resolved and salt-independent measurement system for determining building moisture.
Irreversible Electroporation of Renal Cell Carcinoma: A First-in-Man Phase I Clinical Study
Purpose Irreversible electroporation (IRE) is a newly developed nonthermal tissue-ablation technique in which high-voltage electrical pulses of microsecond duration are applied to induce irreversible permeabilisation of the cell membrane, presumably through nanoscale defects in the lipid bilayer, leading to apoptosis. The purpose of this study was to assess the feasibility and safety of ablating renal cell carcinoma (RCC) tissue by IRE. Methods Six patients scheduled for curative resection of RCC were included. IRE was performed during anaesthesia immediately before the resection with electrographic synchronisation. Central haemodynamics were recorded before and 5 min after electroporation. Five-channel electrocardiography (ECG) was used for detailed analysis of ST waveforms. Blood sampling and 12-lead ECG were performed before, during, and at scheduled intervals after the intervention. Results Analysis of ST waveforms and axis deviations showed no relevant changes during the entire study period. No changes in central haemodynamics were seen 5 min after IRE. Similarly, haematological, serum biochemical, and ECG variables showed no relevant differences during the investigation period. No changes in cardiac function after IRE therapy were found. One case of supraventricular extrasystole was encountered. Initial histopathologic examination showed no immediate adverse effects of IRE (observation of delayed effects will require a different study design). Conclusion IRE seems to offer a feasible and safe technique by which to treat patients with kidney tumours and could offer some potential advantages over current thermal ablative techniques.
Changes in emergency department utilisation in Germany before and during different phases of the COVID-19 pandemic, using data from a national surveillance system up to June 2021
Background During the COVID-19 pandemic and associated public health and social measures, decreasing patient numbers have been described in various healthcare settings in Germany, including emergency care. This could be explained by changes in disease burden, e.g. due to contact restrictions, but could also be a result of changes in utilisation behaviour of the population. To better understand those dynamics, we analysed routine data from emergency departments to quantify changes in consultation numbers, age distribution, disease acuity and day and hour of the day during different phases of the COVID-19 pandemic. Methods We used interrupted time series analyses to estimate relative changes for consultation numbers of 20 emergency departments spread throughout Germany. For the pandemic period (16-03-2020 – 13-06-2021) four different phases of the COVID-19 pandemic were defined as interruption points, the pre-pandemic period (06-03-2017 – 09-03-2020) was used as the reference. Results The most pronounced decreases were visible in the first and second wave of the pandemic, with changes of − 30.0% (95%CI: − 32.2%; − 27.7%) and − 25.7% (95%CI: − 27.4%; − 23.9%) for overall consultations, respectively. The decrease was even stronger for the age group of 0–19 years, with − 39.4% in the first and − 35.0% in the second wave. Regarding acuity levels, consultations assessed as urgent, standard, and non-urgent showed the largest decrease, while the most severe cases showed the smallest decrease. Conclusions The number of emergency department consultations decreased rapidly during the COVID-19 pandemic, without extensive variation in the distribution of patient characteristics. Smallest changes were observed for the most severe consultations and older age groups, which is especially reassuring regarding concerns of possible long-term complications due to patients avoiding urgent emergency care during the pandemic.
Disturbing-Free Determination of Yeast Concentration in DI Water and in Glucose Using Impedance Biochips
Deionized water and glucose without yeast and with yeast (Saccharomyces cerevisiae) of optical density OD600 that ranges from 4 to 16 has been put in the ring electrode region of six different types of impedance biochips and impedance has been measured in dependence on the added volume (20, 21, 22, 23, 24, 25 µL). The measured impedance of two out of the six types of biochips is strongly sensitive to the addition of both liquid without yeast and liquid with yeast and modelled impedance reveals a linear relationship between the impedance model parameters and yeast concentration. The presented biochips allow for continuous impedance measurements without interrupting the cultivation of the yeast. A multiparameter fit of the impedance model parameters allows for determining the concentration of yeast (cy) in the range from cy = 3.3 × 107 to cy = 17 × 107 cells/mL. This work shows that independent on the liquid, i.e., DI water or glucose, the impedance model parameters of the two most sensitive types of biochips with liquid without yeast and with liquid with yeast are clearly distinguishable for the two most sensitive types of biochips.
Towards Bacteria Counting in DI Water of Several Microliters or Growing Suspension Using Impedance Biochips
We counted bacterial cells of E. coli strain K12 in several-microliter DI water or in several-microliter PBS in the low optical density (OD) range (OD = 0.05–1.08) in contact with the surface of Si-based impedance biochips with ring electrodes by impedance measurements. The multiparameter fit of the impedance data allowed calibration of the impedance data with the concentration cb of the E. coli cells in the range of cb = 0.06 to 1.26 × 109 cells/mL. The results showed that for E. coli in DI water and in PBS, the modelled impedance parameters depend linearly on the concentration of cells in the range of cb = 0.06 to 1.26 × 109 cells/mL, whereas the OD, which was independently measured with a spectrophotometer, was only linearly dependent on the concentration of the E. coli cells in the range of cb = 0.06 to 0.50 × 109 cells/mL.
Morphological Transformations of Top Electrodes on YMnO3 Caused by Filamentary Resistive Switching in the Oxide Matrix
Unipolar resistive switching in YMnO3 with large-scale bottom and small-scale top electrodes is analyzed in detail by tracking the morphological transformations of the top electrodes induced by applied writing voltages. Micro-scale digital images are taken after each subsequent quasi-static current-voltage sweep. Current mapping after electrical investigations indicates a shift in the conductivity at the localized areas of the morphologically transformed top electrodes. Those changes are assigned to the heat induced structural and compositional changes within YMnO3 which lead to the formation and rupture of conductive filaments observed as unipolar resistive switching. Presented results underline the importance of Joule heating in the fostering of resistive switching and its adverse impact on the device endurance.
Angiography in the Isolated Perfused Kidney: Radiological Evaluation of Vascular Protection in Tissue Ablation by Nonthermal Irreversible Electroporation
Purpose The nonthermal irreversible electroporation (NTIRE) is a novel nonthermal tissue ablation technique by local application of high-voltage current within microseconds leading to a delayed apoptosis. The purpose of this experimental study was the first angiographic evaluation of the acute damage of renal vascular structure in NTIRE. Methods Results of conventional dynamic digital substraction angiography (DSA) and visualization of the terminal vascular bed of renal parenchyma by high-resolution X-ray in mammography technique were evaluated before, during, and after NTIRE of three isolated perfused porcine ex vivo kidneys. Results In the dedicated investigation, no acute vascular destruction of the renal parenchyma and no dysfunction of the kidney perfusion model were observed during or after NTIRE. Conspicuous were concentric wave-like fluctuations of the DSA contrast agent simultaneous to the NTIRE pulses resulting from NTIRE pulse shock wave. Conclusion The NTIRE offers an ablation method with no acute collateral vascular damage in angiographic evaluation.