Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Boas, Malagat"
Sort by:
Can the delayed effects of climatic oscillations have a greater influence on global fisheries compared to their immediate effects?
Climatic oscillations affect fish population dynamics, ecological processes, and fishing operations in maritime habitats. This study examined how climatic oscillations affect catch rates for striped, blue, and silver marlins in the Atlantic Ocean. These oscillations are regarded as the primary factor influencing the abundance and accessibility of specific resources utilized by fishers. Logbook data were obtained from Taiwanese large-scale fishing vessels for climatic oscillations during the period 2005–2016. The results indicated that the effect of the Subtropical Indian Ocean Dipole on marlin catch rates did not have a lag, whereas those of the North Atlantic Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, and Indian Ocean Dipole had various lags. Pearson’s correlation analysis was conducted to examine the correlations between atmospheric oscillation indices and marlin catch rates, and wavelet analysis was employed to describe the influences of the most relevant lags. The results indicated that annual atmospheric fluctuations and their lags affected the abundance and catchability of striped, blue, and silver marlins in the study region. This, in turn, may affect the presence of these species in the market and lead to fluctuations in their prices in accordance with supply and demand. Overall, understanding the effects of climatic oscillations on fish species are essential for policymakers and coastal communities seeking to manage marine resources, predict changes in marine ecosystems, and establish appropriate methods for controlling the effects of climate variability.
Projected Changes in Spawning Ground Distribution of Mature Albacore Tuna in the Indian Ocean under Various Global Climate Change Scenarios
The present study utilised a geometric mean model in which sea surface temperature, oxygen, and sea surface salinity were used to predict the effects of climate change on the habitats of mature albacore tuna in the Indian Ocean under multiple representative concentration pathway (RCP) scenarios. Data pertaining to the albacore tuna fishing conducted by Taiwanese longline fisheries during the October–March period in 1998–2016 were analysed. The fishery data comprised fishing location (latitude and longitude), fishing effort (number of hooks used), number of catches, fishing time (month and year), and fish weight. Nominal catch per unit effort data were standardised to mitigate the potential effects of temporal and spatial factors in causing bias and overestimation. The Habitat Suitability Index (HSI) scores of potential habitats for mature albacore in the Indian Ocean are predicted to change considerably in response to varying levels of predicted climate change. Under projected warm climate conditions (RCP 8.5), the stratification of water is predicted to cause low HSI areas to expand and potential habitats for mature albacore to shift southward by 2100. The findings derived from these mature albacore habitat forecasts can contribute to the evaluation of potential hazards and feasible adaptation measures for albacore fishery resources in the context of climate change. The distribution trends pertaining to potential habitats for mature albacore should be used with caution and can provide resource stakeholders with guidance for decision-making.