Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
71 result(s) for "Bobrow, Martin"
Sort by:
Data Sharing in the Post-Genomic World: The Experience of the International Cancer Genome Consortium (ICGC) Data Access Compliance Office (DACO)
ICGC and the Development of Controlled Access Policies Controlled access mechanisms may be viewed as the product of dual imperatives: 1) the legal and ethical requirements of regulators and research ethics committees, as well as research funders and study participants, to protect the confidentiality of data from re-identification and misuse by third parties; and 2) pressure, largely from within the science community, to protect data-producing investigators from acts of free riding by other members of the community (e.g., by ensuring they are properly acknowledged in publications and that no parasitic patents are deposited on the data by subsequent data users). Early models of databases having a two-tiered open/controlled access system included the database of Genotypes and Phenotypes (dbGaP) at the US National Institutes of Health (http://www.ncbi.nlm.nih.gov/gap), the Wellcome Trust Case Control Consortium (WTCCC) (http://www.wtccc.org.uk/), the Malaria Genomic Epidemiology Network (MalariaGEN) (http://www.malariagen.net/), and the European Genome-phenome Archive (EGA) (https://www.ebi.ac.uk/ega/).
Polygenic susceptibility to breast cancer and implications for prevention
The knowledge of human genetic variation that will come from the human genome sequence makes feasible a polygenic approach to disease prevention, in which it will be possible to identify individuals as susceptible by their genotype profile and to prevent disease by targeting interventions to those at risk. There is doubt, however, regarding the magnitude of these genetic effects and thus the potential to apply them to either individuals or populations. We have therefore examined the potential for prediction of risk based on common genetic variation using data from a population-based series of individuals with breast cancer. The data are compatible with a log-normal distribution of genetic risk in the population that is sufficiently wide to provide useful discrimination of high- and low-risk groups. Assuming all of the susceptibility genes could be identified, the half of the population at highest risk would account for 88% of all affected individuals. By contrast, if currently identified risk factors for breast cancer were used to stratify the population, the half of the population at highest risk would account for only 62% of all cases. These results suggest that the construction and use of genetic-risk profiles may provide significant improvements in the efficacy of population-based programs of intervention for cancers and other diseases.
Funders must encourage scientists to share
How can we make best use of the vast amounts of data on genomics, epidemiology and population-level health being collected by researchers? Maximizing the benefits depends on how well we as a scientific community share information.
Public Access to Genome-Wide Data: Five Views on Balancing Research with Privacy and Protection
  [...]Bruce Weir provides a commentary on the contribution of the two research articles from Braun et al. [...]it will be some time before forensic scientists abandon the use of 13-20 microsatellite markers in favor of the very large numbers of SNPs considered by Braun et al. and by Visscher and Hill, largely because of the investment in very large offender databases.
Balancing privacy with public benefit
Maximizing access to data resources should increase the chances that scientists will make dis- coveries with medical benefits. [...]most major research funders require grant recipients to make any large data sets they create available to other researchers.
Regulate research at the animal–human interface
[...] proposed experiments that approach these areas of sensitivity should be scrutinized by a national expert multidisciplinary body that also advises on more general aspects of animal research. [...] a very limited number of studies should not currently be undertaken because they raise very strong ethical concerns or lack sufficient scientific justification.
The UK10K project identifies rare variants in health and disease
The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides ( APOB ), adiponectin ( ADIPOQ ) and low-density lipoprotein cholesterol ( LDLR and RGAG1 ) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results. Low read depth sequencing of whole genomes and high read depth exomes of nearly 10,000 extensively phenotyped individuals are combined to help characterize novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with lipid-related traits; in addition to describing population structure and providing functional annotation of rare and low-frequency variants the authors use the data to estimate the benefits of sequencing for association studies. Genome variation in health and disease This paper, combining data and initial findings from the different arms of the UK10K project, describes insights from low-read-depth sequencing of whole genomes or high-read-depth exome sequencing of nearly 10,000 individuals sampled from a range of disease collections, as well as participants from healthy population based cohorts. The authors characterize novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with lipid-related traits. In addition to describing population structure and providing functional annotation of rare and low frequency variants, they use the data to estimate the benefits of sequencing for association studies.