Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
26,873
result(s) for
"Bohlen, S"
Sort by:
Experimental Signatures of the Quantum Nature of Radiation Reaction in the Field of an Ultraintense Laser
by
Poder, K.
,
McKenna, P.
,
Mangles, S. P. D.
in
Acceleration
,
Critical field (superconductivity)
,
Electric fields
2018
The description of the dynamics of an electron in an external electromagnetic field of arbitrary intensity is one of the most fundamental outstanding problems in electrodynamics. Remarkably, to date, there is no unanimously accepted theoretical solution for ultrahigh intensities and little or no experimental data. The basic challenge is the inclusion of the self-interaction of the electron with the field emitted by the electron itself—the so-called radiation reaction force. We report here on the experimental evidence of strong radiation reaction, in an all-optical experiment, during the propagation of highly relativistic electrons (maximum energy exceeding 2 GeV) through the field of an ultraintense laser (peak intensity of4×1020W/cm2). In their own rest frame, the highest-energy electrons experience an electric field as high as one quarter of the critical field of quantum electrodynamics and are seen to lose up to 30% of their kinetic energy during the propagation through the laser field. The experimental data show signatures of quantum effects in the electron dynamics in the external laser field, potentially showing departures from the constant cross field approximation.
Journal Article
Compact all-optical precision-tunable narrowband hard Compton X-ray source
2022
Readily available bright X-ray beams with narrow bandwidth and tunable energy promise to unlock novel developments in a wide range of applications. Among emerging alternatives to large-scale and costly present-day radiation sources which severely restrict the availability of such beams, compact laser-plasma-accelerator-driven inverse Compton scattering sources show great potential. However, these sources are currently limited to tens of percent bandwidths, unacceptably large for many applications. Here, we show conceptually that using active plasma lenses to tailor the electron bunch-photon interaction, tunable X-ray and gamma beams with percent-level bandwidths can be produced. The central X-ray energy is tunable by varying the focusing strength of the lens, without changing electron bunch properties, allowing for precision-tuning the X-ray beam energy. This method is a key development towards laser-plasma-accelerator-driven narrowband, precision tunable femtosecond photon sources, enabling a paradigm shift and proliferation of compact X-ray applications.
Journal Article
High-resolution sampling of beam-driven plasma wakefields
2020
Plasma-wakefield accelerators driven by intense particle beams promise to significantly reduce the size of future high-energy facilities. Such applications require particle beams with a well-controlled energy spectrum, which necessitates detailed tailoring of the plasma wakefield. Precise measurements of the effective wakefield structure are therefore essential for optimising the acceleration process. Here we propose and demonstrate such a measurement technique that enables femtosecond-level (15 fs) sampling of longitudinal electric fields of order gigavolts-per-meter (0.8 GV m
−1
). This method—based on energy collimation of the incoming bunch—made it possible to investigate the effect of beam and plasma parameters on the beam-loaded longitudinally integrated plasma wakefield, showing good agreement with particle-in-cell simulations. These results open the door to high-quality operation of future plasma accelerators through precise control of the acceleration process.
Controlled particle acceleration in plasmas requires precise measurements of the excited wakefield. Here the authors report and demonstrate a high-resolution method to measure the effective longitudinal electric field of a beam-driven plasma-wakefield accelerator.
Journal Article
FLASHForward: plasma wakefield accelerator science for high-average-power applications
2019
The FLASHForward experimental facility is a high-performance test-bed for precision plasma wakefield research, aiming to accelerate high-quality electron beams to GeV-levels in a few centimetres of ionized gas. The plasma is created by ionizing gas in a gas cell either by a high-voltage discharge or a high-intensity laser pulse. The electrons to be accelerated will either be injected internally from the plasma background or externally from the FLASH superconducting RF front end. In both cases, the wakefield will be driven by electron beams provided by the FLASH gun and linac modules operating with a 10 Hz macro-pulse structure, generating 1.25 GeV, 1 nC electron bunches at up to 3 MHz micro-pulse repetition rates. At full capacity, this FLASH bunch-train structure corresponds to 30 kW of average power, orders of magnitude higher than drivers available to other state-of-the-art LWFA and PWFA experiments. This high-power functionality means FLASHForward is the only plasma wakefield facility in the world with the immediate capability to develop, explore and benchmark high-average-power plasma wakefield research essential for next-generation facilities. The operational parameters and technical highlights of the experiment are discussed, as well as the scientific goals and high-average-power outlook.
This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.
Journal Article
Author Correction: High-resolution sampling of beam-driven plasma wakefields
2021
A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-20676-1
Journal Article
Stable witness-beam formation in a beam-driven plasma cathode
2021
Electron beams to be accelerated in beam-driven plasma wakes are commonly formed by a photocathode and externally injected into the wakefield of a preceding bunch. Alternatively, using the plasma itself as a cathode offers the possibility of generating ultrashort, low-emittance beams by trapping and accelerating electrons from the ambient plasma background. Here, we present a beam-driven plasma cathode realized via laser-triggered density-downramp injection, showing stable beam formation over more than a thousand consecutive events with an injection probability of 95%. The plasma cathode is highly tunable, resulting in the injection of electron bunches of tens of pC of charge, energies of up to 79 MeV, and relative energy spreads as low as a few percent. The stability of the injected beams was sufficiently high to experimentally determine their normalized emittance of9.3μmrms with a multishot method.
Journal Article
Origin of Granulite Terranes and the Formation of the Lowermost Continental Crust
1989
Differences in composition and pressures of equilibration between exposed, regional granulite terranes and suites of granulite xenoliths of crustal origin indicate that granulite terranes do not represent exhumed lowermost crust, as had been thought, but rather middle and lower-middle crustal levels. Application of well-calibrated barometers indicate that exposed granulites record equilibration pressures of 0.6 to 0.8 gigapascal (20 to 30 kilometers depth of burial), whereas granulite xenoliths, which also tend to be more mafic, record pressures of at least 1.0 to 1.5 gigapascals (35 to 50 kilometers depth of burial). Thickening of the crust by the crystallization of mafic magmas at the crust-mantle boundary may account for both the formation of regional granulite terranes at shallower depths and the formation of deep-seated mafic crust represented by many xenolith suites.
Journal Article
A laser–plasma platform for photon–photon physics: the two photon Breit–Wheeler process
2021
We describe a laser–plasma platform for photon–photon collision experiments to measure fundamental quantum electrodynamic processes. As an example we describe using this platform to attempt to observe the linear Breit–Wheeler process. The platform has been developed using the Gemini laser facility at the Rutherford Appleton Laboratory. A laser Wakefield accelerator and a bremsstrahlung convertor are used to generate a collimated beam of photons with energies of hundreds of MeV, that collide with keV x-ray photons generated by a laser heated plasma target. To detect the pairs generated by the photon–photon collisions, a magnetic transport system has been developed which directs the pairs onto scintillation-based and hybrid silicon pixel single particle detectors (SPDs). We present commissioning results from an experimental campaign using this laser–plasma platform for photon–photon physics, demonstrating successful generation of both photon sources, characterisation of the magnetic transport system and calibration of the SPDs, and discuss the feasibility of this platform for the observation of the Breit–Wheeler process. The design of the platform will also serve as the basis for the investigation of strong-field quantum electrodynamic processes such as the nonlinear Breit–Wheeler and the Trident process, or eventually, photon–photon scattering.
Journal Article
A laser-plasma platform for photon-photon physics
by
Rajeev, P.P.
,
Dannheim, D.
,
Steinke, S.
in
Accelerator Physics
,
General Physics
,
High Energy Physics - Experiment
2021
We describe a laser-plasma platform for photon-photon collision experiments to measure fundamental quantum electrodynamic processes such as the linear Breit-Wheeler process with real photons. The platform has been developed using the Gemini laser facility at the Rutherford Appleton Laboratory. A laser wakefield accelerator and a bremsstrahlung convertor are used to generate a collimated beam of photons with energies of hundreds of MeV, that collide with keV x-ray photons generated by a laser heated plasma target. To detect the pairs generated by the photon-photon collisions, a magnetic transport system has been developed which directs the pairs onto scintillation-based and hybrid silicon pixel single particle detectors. We present commissioning results from an experimental campaign using this laser-plasma platform for photon-photon physics, demonstrating successful generation of both photon sources, characterisation of the magnetic transport system and calibration of the single particle detectors, and discuss the feasibility of this platform for the observation of the Breit-Wheeler process. The design of the platform will also serve as the basis for the investigation of strong-field quantum electrodynamic processes such as the nonlinear Breit-Wheeler and the Trident process, or eventually, photon-photon scattering.
Journal Article
Time and Metamorphic Petrology: Calcite to Aragonite Experiments
1992
Although the equilibrium phase relations of many mineral systems are generally well established, the rates of transformations, particularly in polycrystalline rocks, are not. The results of experiments on the calcite to aragonite transformation in polycrystalline marble are different from those for earlier experiments on powdered and single-crystal calcite. The transformation in the polycrystalline samples occurs by different mechanisms, with a different temperature dependence, and at a markedly slower rate. This work demonstrates the importance of kinetic studies on fully dense polycrystalline aggregates for understanding mineralogic phase changes in nature. Extrapolation of these results to geological time scales suggests that transformation of calcite to aragonite does not occur in the absence of volatiles at temperatures below 200°C. Kinetic hindrance is likely to extend to higher temperatures in more complex transformations.
Journal Article