Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
69 result(s) for "Bollard, Catherine M."
Sort by:
Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors
Neoantigen discovery in pediatric brain tumors is hampered by their low mutational burden and scant tissue availability. Here we develop a proteogenomic approach combining tumor DNA/RNA sequencing and mass spectrometry proteomics to identify tumor-restricted (neoantigen) peptides arising from multiple genomic aberrations to generate a highly target-specific, autologous, personalized T cell immunotherapy. Our data indicate that aberrant splice junctions are the primary source of neoantigens in medulloblastoma, a common pediatric brain tumor. Proteogenomically identified tumor-specific peptides are immunogenic and generate MHC II-based T cell responses. Moreover, polyclonal and polyfunctional T cells specific for tumor-specific peptides effectively eliminate tumor cells in vitro. Targeting tumor-specific antigens obviates the issue of central immune tolerance while potentially providing a safety margin favoring combination with other immune-activating therapies. These findings demonstrate the proteogenomic discovery of immunogenic tumor-specific peptides and lay the groundwork for personalized targeted T cell therapies for children with brain tumors. Targeting tumor-associated antigens in paediatric medulloblastomas (MB) is challenging due to their low mutational burden. Here, the authors develop a sensitive proteogenomic approach to identify tumour specific neoantigens, which may enable personalised T cell immunotherapy in paediatric MB.
Antigen Presenting Cell-Mediated Expansion of Human Umbilical Cord Blood Yields Log-Scale Expansion of Natural Killer Cells with Anti-Myeloma Activity
Natural killer (NK) cells are important mediators of anti-tumor immunity and are active against several hematologic malignancies, including multiple myeloma (MM). Umbilical cord blood (CB) is a promising source of allogeneic NK cells but large scale ex vivo expansion is required for generation of clinically relevant CB-derived NK (CB-NK) cell doses. Here we describe a novel strategy for expanding NK cells from cryopreserved CB units using artificial antigen presenting feeder cells (aAPC) in a gas permeable culture system. After 14 days, mean fold expansion of CB-NK cells was 1848-fold from fresh and 2389-fold from cryopreserved CB with >95% purity for NK cells (CD56(+)/CD3(-)) and less than 1% CD3(+) cells. Though surface expression of some cytotoxicity receptors was decreased, aAPC-expanded CB-NK cells exhibited a phenotype similar to CB-NK cells expanded with IL-2 alone with respect to various inhibitory receptors, NKG2C and CD94 and maintained strong expression of transcription factors Eomesodermin and T-bet. Furthermore, CB-NK cells formed functional immune synapses with and demonstrated cytotoxicity against various MM targets. Finally, aAPC-expanded CB-NK cells showed significant in vivo activity against MM in a xenogenic mouse model. Our findings introduce a clinically applicable strategy for the generation of highly functional CB-NK cells which can be used to eradicate MM.
Autologous HIV-specific T cell therapy targeting conserved epitopes is well-tolerated in six adults with HIV: an open-label, single-arm phase 1 study
Novel cellular therapies may enable HIV control or cure. HIV-specific T cells targeting conserved immunogenic protein regions of HIV Gag/Pol and the entirety of HIV Nef, termed HST-NEETs, eliminate HIV infected cells in vitro. Here we enroll seven participants in an open-label, single-arm phase 1 study (NCT03485963) to evaluate the safety (primary endpoint) of two autologous administrations of HST-NEET products without prescribed lymphodepletion. Adults with well-controlled HIV on anti-retroviral therapy are eligible. Six participants completed safety monitoring. No serious product-related toxicities are observed. Secondary endpoints are to assess expansion and persistence of HIV-reactive T cell clones, and changes to the HIV reservoir for each infused participant. HIV-specific T cell and HIV anti-Env antibody responses increase in two participants after infusion two. A trend towards decreasing levels of intact proviruses is observed in 2 participants. Three participants show persistence of HIV-reactive, product-associated T cell clones for ≥40 weeks post infusions. HST-NEETs infusions are well-tolerated. Future trials are needed to evaluate the efficacy of HST-NEETs in this population. While anti-retroviral therapy (ART) helps contain HIV, whether adoptive T cell therapy further improve the prognosis is unclear. Here the authors conduct an open-label, single-arm phase 1 study to assess the safety (primary outcome) and characteristic (secondary outcome) of autologous, HIV-specific T cell therapy to find it safe to warrant further efficacy assessment.
Secondary bone marrow graft loss after third-party virus-specific T cell infusion: Case report of a rare complication
Virus-specific T cells (VST) from partially-HLA matched donors have been effective for treatment of refractory viral infections in immunocompromised patients in prior studies with a good safety profile, but rare adverse events have been described. Here we describe a unique and severe adverse event of VST therapy in an infant with severe combined immunodeficiency, who receives, as part of a clinical trial (NCT03475212), third party VSTs for treating cytomegalovirus viremia following bone marrow transplantation. At one-month post-VST infusion, rejection of graft and reversal of chimerism is observed, as is an expansion of T cells exclusively from the VST donor. Single-cell gene expression and T cell receptor profiling demonstrate a narrow repertoire of predominantly activated CD4 + T cells in the recipient at the time of rejection, with the repertoire overlapping more with that of peripheral blood from VST donor than the infused VST product. This case thus demonstrates a rare but serious side effect of VST therapy. Infusion of virus-specific T (VST) cells is used for treating drug-resistant viremia. Here the authors report, as part of the clinical trial, NCT03475212, a lethal case of unexpected bone marrow graft loss and chimerism reversal that is induced by the infusion of third-party VST intended to treat transplantation-related cytomegalovirus viremia.
Medulloblastoma rendered susceptible to NK-cell attack by TGFβ neutralization
Background Medulloblastoma (MB), the most common pediatric brain cancer, presents with a poor prognosis in a subset of patients with high risk disease, or at recurrence, where current therapies are ineffective. Cord blood (CB) natural killer (NK) cells may be promising off-the-shelf effector cells for immunotherapy due to their recognition of malignant cells without the need for a known target, ready availability from multiple banks, and their potential to expand exponentially. However, they are currently limited by immune suppressive cytokines secreted in the MB tumor microenvironment including Transforming Growth Factor β (TGF-β). Here, we address this challenge in in vitro models of MB. Methods CB-derived NK cells were modified to express a dominant negative TGF-β receptor II (DNRII) using retroviral transduction. The ability of transduced CB cells to maintain function in the presence of medulloblastoma-conditioned media was then assessed. Results We observed that the cytotoxic ability of nontransduced CB-NK cells was reduced in the presence of TGF-β-rich, medulloblastoma-conditioned media (21.21 ± 1.19% killing at E:T 5:1 in the absence vs. 14.98 ± 2.11% in the presence of medulloblastoma-conditioned media, n = 8, p = 0.02), but was unaffected in CB-derived DNRII-transduced NK cells (21.11 ± 1.84% killing at E:T 5:1 in the absence vs. 21.81 ± 3.37 in the presence of medulloblastoma-conditioned media, n = 8, p = 0.85. We also observed decreased expression of CCR2 in untransduced NK cells (mean CCR2 MFI 826 ± 117 in untransduced NK + MB supernatant from mean CCR2 MFI 1639.29 ± 215 in no MB supernatant, n = 7, p = 0.0156), but not in the transduced cells. Finally, we observed that CB-derived DNRII-transduced NK cells may protect surrounding immune cells by providing a cytokine sink for TGF-β (decreased TGF-β levels of 610 ± 265 pg/mL in CB-derived DNRII-transduced NK cells vs. 1817 ± 342 pg/mL in untransduced cells; p = 0.008). Conclusions CB NK cells expressing a TGF-β DNRII may have a functional advantage over unmodified NK cells in the presence of TGF-β-rich MB, warranting further investigation on its potential applications for patients with medulloblastoma.
Rituximab for High-Risk, Mature B-Cell Non-Hodgkin’s Lymphoma in Children
The addition of rituximab to standard combination chemotherapy in children with high-grade (mainly Burkitt’s) lymphoma improved 3-year event-free survival (94% vs. 82%). The incidence of myelotoxic effects was somewhat higher, without a higher incidence of death from toxic effects; the incidence of hypogammaglobulinemia was higher.
Are We Too Reliant on Radiation Therapy for Children with Hodgkin’s Lymphoma?
The treatment of Hodgkin’s lymphoma is a success story that highlights our ability to cure cancer in advanced stages and when first-line therapy fails. Current goals focus on improving cure rates while mitigating the risk of long-term toxic effects that emerge during therapy and late effects that manifest after decades. Second cancers and cardiovascular complications are late effects that cause disease and death in patients who survived the initial cancer, but they may be relegated to secondary importance as compared with short-term disease control. Yet, the risk of second cancers continues to increase for at least 40 years after therapy, . . .
Virus-Specific T Cell Therapies for HIV: Lessons Learned From Hematopoietic Stem Cell Transplantation
Human immunodeficiency virus (HIV) has caused millions of deaths and continues to threaten the health of millions of people worldwide. Despite anti-retroviral therapy (ART) substantially alleviating severity and limiting transmission, HIV has not been eradicated and its persistence can lead to other health concerns such as cancer. The only two cases of HIV cure to date are HIV cancer patients receiving an allogeneic hematopoietic stem cell transplantation (allo-HSCT) from a donor with the CCR5 Δ32 mutation. While this approach has not led to such success in other patients and is not applicable to HIV individuals without cancer, the encouraging results may point toward a breakthrough in developing a cure strategy for HIV. Adoptive transfer of virus-specific T cells (VSTs) post HSCT has been effectively used to treat and prevent reactivation of latent viral infections such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV), making VSTs an attractive therapeutic to control HIV rebound. Here we will discuss the potential of using adoptive T cell therapies in combination with other treatments such as HSCT and latency reversing agents (LRAs) to achieve a functional cure for HIV.
Concise Review: Umbilical Cord Blood Transplantation: Past, Present, and Future
This study reviews the past, present, and future of cord transplantation, including the potential use of single‐ and double‐unit cord blood transplantation in multiple hematological malignancies including leukemia and aggressive lymphomas in light of recent discoveries. Current excitement in the field revolves around the development of safer techniques to improve homing, engraftment, and immune reconstitution after cord blood transplantation. Allogeneic hematopoietic stem cell transplantation is an important treatment option for fit patients with poor‐risk hematological malignancies; nevertheless, the lack of available fully matched donors limits the extent of its use. Umbilical cord blood has emerged as an effective alternate source of hematopoietic stem cell support. Transplantation with cord blood allows for faster availability of frozen sample and avoids invasive procedures for donors. In addition, this procedure has demonstrated reduced relapse rates and similar overall survival when compared with unrelated allogeneic hematopoietic stem cell transplantation. The limited dose of CD34‐positive stem cells available with single‐unit cord transplantation has been addressed by the development of double‐unit cord transplantation. In combination with improved conditioning regimens, double‐unit cord transplantation has allowed for the treatment of larger children, as well as adult patients with hematological malignancies. Current excitement in the field revolves around the development of safer techniques to improve homing, engraftment, and immune reconstitution after cord blood transplantation. Here the authors review the past, present, and future of cord transplantation.
Applications of cell therapy in the treatment of virus-associated cancers
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein–Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.Several different viruses have a role in cancer pathogenesis, contributing to the development of various haematological malignancies and solid tumours via diverse, multifaceted mechanisms. However, this viral aetiology presents a unique opportunity for adoptive virus-specific T cell (VST) therapy. This Review summarizes the mechanisms of viral carcinogenesis and describes the current clinical experience with adoptive cellular immunotherapies for virus-related cancers, predominantly using non-genetically modified VSTs. The authors also discuss challenges and future directions for the ongoing clinical development of VST therapies.