Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Bonini, Fabien"
Sort by:
The Role of Interstitial Fluid Pressure in Cerebral Porous Biomaterial Integration
Recent advances in biomaterials offer new possibilities for brain tissue reconstruction. Biocompatibility, provision of cell adhesion motives and mechanical properties are among the present main design criteria. We here propose a radically new and potentially major element determining biointegration of porous biomaterials: the favorable effect of interstitial fluid pressure (IFP). The force applied by the lymphatic system through the interstitial fluid pressure on biomaterial integration has mostly been neglected so far. We hypothesize it has the potential to force 3D biointegration of porous biomaterials. In this study, we develop a capillary hydrostatic device to apply controlled in vitro interstitial fluid pressure and study its effect during 3D tissue culture. We find that the IFP is a key player in porous biomaterial tissue integration, at physiological IFP levels, surpassing the known effect of cell adhesion motives. Spontaneous electrical activity indicates that the culture conditions are not harmful for the cells. Our work identifies interstitial fluid pressure at physiological negative values as a potential main driver for tissue integration into porous biomaterials. We anticipate that controlling the IFP level could narrow the gap between in vivo and in vitro and therefore decrease the need for animal screening in biomaterial design.
Designing Organoid Models to Monitor Cancer Progression, Plasticity and Resistance: The Right Set Up for the Right Question
The recent trend in 3D cell modeling has fostered the emergence of a wide range of models, addressing very distinct goals ranging from the fundamental exploration of cell–cell interactions to preclinical assays for personalized medicine. It is clear that no single model will recapitulate the complexity and dynamics of in vivo situations. The key is to define the critical points, achieve a specific goal and design a model where they can be validated. In this report, we focused on cancer progression. We describe our model which is designed to emulate breast carcinoma progression during the invasive phase. We chose to provide topological clues to the target cells by growing them on microsupports, favoring a polarized epithelial organization before they are embedded in a 3D matrix. We then watched for cell organization and differentiation for these models, adding stroma cells then immune cells to follow and quantify cell responses to drug treatment, including quantifying cell death and viability, as well as morphogenic and invasive properties. We used model cell lines including Comma Dβ, MCF7 and MCF10A mammary epithelial cells as well as primary breast cancer cells from patient-derived xenografts (PDX). We found that fibroblasts impacted cell response to Docetaxel and Palbociclib. We also found that NK92 immune cells could target breast cancer cells within the 3D configuration, providing quantitative monitoring of cell cytotoxicity. We also tested several sources for the extracellular matrix and selected a hyaluronan-based matrix as a promising alternative to mouse tumor basement membrane extracts for primary human cancer cells. Overall, we validated a new 3D model designed for breast cancer for preclinical use in personalized medicine.
Dynamics of flavonol accumulation in leaf tissues under different UV-B regimes in Centella asiatica (Apiaceae)
Main conclusion A cumulative effect of UV-B doses on epidermal flavonol accumulation was observed during the first week of a time course study in Centella asiatica (Apiaceae). However, once flavonol levels had peaked, additional accumulation was possible only if higher daily UV-B irradiances were applied. We aimed to understand the dynamics of flavonol accumulation in leaf tissues using non-destructive spectroscopy and HPLC–mass spectrometry. When leaves that had grown without UV-B were given brief daily exposures to low-irradiance UV-B, they accumulated flavonols, predominantly kaempferol- 3 - O - β - d -glucuronopyranoside and quercetin- 3 - O - β - d -glucuronopyranoside, in their exposed epidermis, reaching a plateau after 7 days. More prolonged UV-B exposures or higher doses eventually augmented flavonol concentrations even in non-exposed tissues. If UV-B irradiance was subsequently reduced, leaves appeared to lose their ability to accumulate further flavonols in their epidermis even if the duration of daily exposure was increased. A higher irradiance level was then necessary to further increase flavonol accumulation. When subsequently acclimated to higher UV-B irradiances, mature leaves accumulated less flavonols than did developing ones. Our study suggests that levels of epidermal flavonols in leaves are governed primarily by UV-B irradiance rather than by duration of exposure.
Neurothreads: Cryogel carrier-based differentiation and delivery of mature neurons in the treatment of Parkinson’s disease
We present in-vivo transplantation of mature dopaminergic neurons by means of macroporous, injectable carriers, to enhance cell therapy in Parkinson’s disease. The carriers are synthesized by crosslinking carboxymethylcellulose at subzero temperatures, resulting in cylindrical, highly resilient porous cryogels, which we term Neurothreads. We develop efficient covalent immobilization of the neural adhesion proteins laminin 111, collagen IV and fibronectin, as well as of the extracellular matrix extract Matrigel to the Neurothreads. We observe the highest neural spreading on laminin 111 and Matrigel. We show compatibility with established dopaminergic differentiation of both HS420 human embryonic stem cells and the LUHMES midbrain model cell line. The porous Neurothread carriers withstand compression during minimally invasive stereotactic injection, and ensure viability of mature neurons including extended neurites. Implanted into the striatum in mice, the Neurothreads enable survival of transplanted mature neurons obtained by directed differentiation of the HS420 human embryonic stem cells, as a dense tissue in situ, including dopaminergic cells. With the successful in-vivo transfer of intact, mature and fully open 3D neural networks, we provide a powerful tool to extend established differentiation protocols to higher maturity and to enhance preconfigured neural network transplantation.