Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
101
result(s) for
"Bonini, Paolo"
Sort by:
Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome
by
Bonini, Paolo
,
Colla, Giuseppe
,
Cardarelli, Mariateresa
in
Abiotic stress
,
Agricultural commodities
,
Agricultural production
2017
Plant-derived protein hydrolysates (PHs) have gained prominence as plant biostimulants because of their potential to increase the germination, productivity and quality of a wide range of horticultural and agronomic crops. Application of PHs can also alleviate the negative effects of abiotic plant stress due to salinity, drought and heavy metals. Recent studies aimed at uncovering the mechanisms regulating these beneficial effects indicate that PHs could be directly affecting plants by stimulating carbon and nitrogen metabolism, and interfering with hormonal activity. Indirect effects could also play a role as PHs could enhance nutrient availability in plant growth substrates, and increase nutrient uptake and nutrient-use efficiency in plants. Moreover, the beneficial effects of PHs also could be due to the stimulation of plant microbiomes. Plants are colonized by an abundant and diverse assortment of microbial taxa that can help plants acquire nutrients and water and withstand biotic and abiotic stress. The substrates provided by PHs, such as amino acids, could provide an ideal food source for these plant-associated microbes. Indeed, recent studies have provided evidence that plant microbiomes are modified by the application of PHs, supporting the hypothesis that PHs might be acting, at least in part, via changes in the composition and activity of these microbial communities. Application of PHs has great potential to meet the twin challenges of a feeding a growing population while minimizing agriculture's impact on human health and the environment. However, to fully realize the potential of PHs, further studies are required to shed light on the mechanisms conferring the beneficial effects of these products, as well as identify product formulations and application methods that optimize benefits under a range of agro-ecological conditions.
Journal Article
A lipidome atlas in MS-DIAL 4
2020
We present Mass Spectrometry-Data Independent Analysis software version 4 (MS-DIAL 4), a comprehensive lipidome atlas with retention time, collision cross-section and tandem mass spectrometry information. We formulated mass spectral fragmentations of lipids across 117 lipid subclasses and included ion mobility tandem mass spectrometry. Using human, murine, algal and plant biological samples, we annotated and semiquantified 8,051 lipids using MS-DIAL 4 with a 1–2% estimated false discovery rate. MS-DIAL 4 helps standardize lipidomics data and discover lipid pathways.
Mass spectral fragmentations of lipids across 117 lipid subclasses are presented in a lipidome atlas.
Journal Article
Protein Hydrolysate Stimulates Growth in Tomato Coupled With N-Dependent Gene Expression Involved in N Assimilation
by
Sestili, Francesco
,
Pucci, Anna
,
Bonini, Paolo
in
Agricultural production
,
Amino acids
,
Ammonium
2018
Plant-derived protein hydrolysates (PHs) have received increased attention in the last decade because of their potential to improve yield, nutritional quality as well as tolerance to abiotic stressors. The current study investigated the effects and the molecular mechanisms of a legume-derived PH under optimal and sub-optimal nitrogen (N) concentrations (112 and 7 mg L
, respectively) in tomato (
L.). Growth and mineral composition of tomato plants treated with PHs by foliar spray or substrate drench were compared to untreated plants. In addition, the expression was determined of genes encoding ammonium and nitrate transporters and seven enzymes involved in N metabolism: nitrate reductase (
), nitrite reductase (
), glutamine synthetase 1 (
), glutamine synthetase 2 (
), ferredoxin-dependent glutamate synthase (
), NADH-dependent glutamate synthase (
), and glutamate dehydrogenase (
). The root and total plant dry weight, SPAD index and leaf nitrogen content were higher by 21, 17, 7, and 6%, respectively, in plants treated by a substrate drench in comparison to untreated tomato plants, whereas foliar application of PH gave intermediate values. PH-treated plants grown with lower N availability showed reduced expression of
and
as well as of nitrate and ammonium transporter transcripts in both leaf and root tissues in comparison with untreated plants; this was especially pronounced after application of PH by substrate drench. Conversely, the transcript level of an amino acid transporter gene was up-regulated in comparison with untreated plants. At high N regime, the transcript levels of the ammonium and amino acid transporters and also
,
, and
were significantly up-regulated in root after PH foliar and substrate drench applications compared with untreated plants. An up-regulation was also observed for
,
, and
transcripts in leaf after substrate drench. These results highlighted the potential benefits of using legume PH in vegetable production systems to increase growth and N-nutritional status of plants.
Journal Article
Protein hydrolysates enhance recovery from drought stress in tomato plants: phenomic and metabolomic insights
by
Rouphael, Youssef
,
Colla, Giuseppe
,
Cardarelli, Mariateresa
in
biostimulants
,
Chlorophyll
,
Climate change
2024
High-throughput phenotyping technologies together with metabolomics analysis can speed up the development of highly efficient and effective biostimulants for enhancing crop tolerance to drought stress. The aim of this study was to examine the morphophysiological and metabolic changes in tomato plants foliarly treated with two protein hydrolysates obtained by enzymatic hydrolysis of vegetal proteins from Malvaceae (PH1) or Fabaceae (PH2) in comparison with a control treatment, as well as to investigate the mechanisms involved in the enhancement of plant resistance to repeated drought stress cycles.
A phenotyping device was used for daily monitoring morphophysiological traits while untargeted metabolomics analysis was carried out in leaves of the best performing treatment based on phenotypic results.
PH1 treatment was the most effective in enhancing plant resistance to water stress due to the better recovery of digital biomass and 3D leaf area after each water stress event while PH2 was effective in mitigating water stress only during the recovery period after the first drought stress event. Metabolomics data indicated that PH1 modified primary metabolism by increasing the concentration of dipeptides and fatty acids in comparison with untreated control, as well as secondary metabolism by regulating several compounds like phenols. In contrast, hormones and compounds involved in detoxification or signal molecules against reactive oxygen species were downregulated in comparison with untreated control.
The above findings demonstrated the advantages of a combined phenomics-metabolomics approach for elucidating the relationship between metabolic and morphophysiological changes associated with a biostimulant-mediated increase of crop resistance to repeated water stress events.
Journal Article
A Vegetal Biopolymer-Based Biostimulant Promoted Root Growth in Melon While Triggering Brassinosteroids and Stress-Related Compounds
by
Rouphael, Youssef
,
Cardarelli, Mariateresa
,
Colla, Giuseppe
in
Abscisic acid
,
Biomass
,
Biopolymers
2018
Plant biostimulants are receiving great interest for boosting root growth during the first phenological stages of vegetable crops. The present study aimed at elucidating the morphological, physiological, and metabolomic changes occurring in greenhouse melon treated with the biopolymer-based biostimulant Quik-link, containing lateral root promoting peptides, and lignosulphonates. The vegetal-based biopolymer was applied at five rates (0, 0.06, 0.12, 0.24, or 0.48 mL plant
) as substrate drench. The application of biopolymer-based biostimulant at 0.12 and 0.24 mL plant
enhanced dry weight of melon leaves and total biomass by 30.5 and 27.7%, respectively, compared to biopolymer applications at 0.06 mL plant
and untreated plants. The root dry biomass, total root length, and surface in biostimulant-treated plants were significantly higher at 0.24 mL plant
and to a lesser extent at 0.12 and 0.48 mL plant
, in comparison to 0.06 mL plant
and untreated melon plants. A convoluted biochemical response to the biostimulant treatment was highlighted through UHPLC/QTOF-MS metabolomics, in which brassinosteroids and their interaction with other hormones appeared to play a pivotal role. Root metabolic profile was more markedly altered than leaves, following application of the biopolymer-based biostimulant. Brassinosteroids triggered in roots could have been involved in changes of root development observed after biostimulant application. These hormones, once transported to shoots, could have caused an hormonal imbalance. Indeed, the involvement of abscisic acid, cytokinins, and gibberellin related compounds was observed in leaves following root application of the biopolymer-based biostimulant. Nonetheless, the treatment triggered an accumulation of several metabolites involved in defense mechanisms against biotic and abiotic stresses, such as flavonoids, carotenoids, and glucosinolates, thus potentially improving resistance toward plant stresses.
Journal Article
Plant- and Seaweed-Based Extracts Increase Yield but Differentially Modulate Nutritional Quality of Greenhouse Spinach through Biostimulant Action
by
Bonini, Paolo
,
Giordano, Maria
,
Rouphael, Youssef
in
Agricultural production
,
Agricultural research
,
Algae
2018
Plant biostimulants (PBs) such as protein hydrolysates and seaweed extracts are attracting the increasing interest of scientists and vegetable growers for their potential toenhance yield and nutritional quality. The current study assessed crop productivity, leaf colorimetry, mineral profile and bioactive compounds of greenhouse spinach in response to the foliar application of three PBs: legume-derived protein hydrolysate [PH], extract of seaweed Ecklonia maxima or mixture of vegetal oils, herbal and seaweed Ascophyllum nodosum extracts. Plants were PB-treated at a rate of 3 mL L−1 four times during their growth cycle at weekly intervals. Foliar PB applications enhanced fresh yield, dry biomass and leaf area of spinach in comparison with untreated plants. Improved yield performance with PB applications was associated with improved chlorophyll biosynthesis (higher SPAD index). The three PB treatments elicited an increase in bioactive compounds (total phenols and ascorbic acid), thus raised the functional quality of spinach. The application of PH enhanced K and Mg concentrations and did not result in increased nitrate accumulation as observed with the other two PB treatments. Our findings can assist vegetable farmers and the agro-food industry in adopting innovative and sustainable tools such as PB for complementing a high yield with premium quality.
Journal Article
Unveiling the root–rhizosphere environment of perennial wheat: a metabolomic perspective
2025
Background
Perennial grain roots grow continuously, enhancing soil carbon sequestration and forming a “holobiont” with the microbiome, essential for nutrient acquisition and stress resilience. Consequently, perennial grains serve as ideal models for investigating long-term dynamics between root systems and the rhizosphere environment. Despite their potential, the rhizosphere environment of perennial grains remains underexplored. This research utilizes an untargeted metabolomic approach to characterize the root–rhizosphere molecular signals in four new perennial grain (NPGs) lines named 235a, 280b, 11,955, and OK72, across four years of growth.
Results
Metabolomic analysis annotated 2,527 metabolites, most of which originated from fungi (30.3%), bacteria (23%), and plants (15.5%). Principal component analysis explained 54.8% of the variation between rhizosphere and root metabolites, with 8.7% variation separating 1st and 4th year root metabolites, while rhizosphere metabolites showed less variation between years. The comparison between the annual durum wheat variety and NPGs revealed 616 differentially abundant metabolites in roots and 15 in the rhizosphere, already at the 1st year of growth. In the 4th year, NPGs metabolomes diverged significantly from
Thinopyrum intermedium
, which stood in the soil for 11 years, with 184 root and 138 rhizosphere differentially abundant metabolites. Comparison between genotypes diversified NPGs in the 1st year, showing a higher abundance of root metabolites for OK72 compared to the other lines, including key modulators of root architecture like glutathione and serotonin, and compounds from α-linoleic acid metabolism, which are known to induce systemic resistance against pathogens and herbivore defense. Differences among NPGs also emerged in the 4th year, with OK72 separating from the other three, sharing with
Thinopyrum intermedium
a higher abundance of purine nucleosides and diazanaphthalenes.
Conclusions
The metabolomic analysis revealed that starting from the 1st year, the roots of NPGs produce a set of metabolites distinct from those of the annual durum species, many of which are defense molecules against biotic and abiotic stresses (e.g., syringic acid, glutathione, and α-linoleic acid pathway compounds). The OK72 genotype, which exhibits below-ground traits more aligned with perennialism, differs from the other lines in the abundance of several interesting metabolites, confirming it as an ideal parental candidate for developing new perennial wheat lines.
Journal Article
Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput Plant Phenotyping and Metabolomics: A Case Study on Tomato
by
Bonini, Paolo
,
Panzarová, Klára
,
Rouphael, Youssef
in
Agricultural production
,
Automation
,
Biomass
2019
Designing and developing new biostimulants is a crucial process which requires an accurate testing of the product effects on the morpho-physiological traits of plants and a deep understanding of the mechanism of action of selected products. Product screening approaches using omics technologies have been found to be more efficient and cost effective in finding new biostimulant substances. A screening protocol based on the use of high-throughput phenotyping platform for screening new vegetal-derived protein hydrolysates (PHs) for biostimulant activity followed by a metabolomic analysis to elucidate the mechanism of the most active PHs has been applied on tomato crop. Eight PHs (A-G, I) derived from enzymatic hydrolysis of seed proteins of
and
species were foliarly sprayed twice during the trial. A non-ionic surfactant Triton X-100 at 0.1% was also added to the solutions before spraying. A control treatment foliarly sprayed with distilled water containing 0.1% Triton X-100 was also included. Untreated and PH-treated tomato plants were monitored regularly using high-throughput non-invasive imaging technologies. The phenotyping approach we used is based on automated integrative analysis of photosynthetic performance, growth analysis, and color index analysis. The digital biomass of the plants sprayed with PH was generally increased. In particular, the relative growth rate and the growth performance were significantly improved by PHs A and I, respectively, compared to the untreated control plants. Kinetic chlorophyll fluorescence imaging did not allow to differentiate the photosynthetic performance of treated and untreated plants. Finally, MS-based untargeted metabolomics analysis was performed in order to characterize the functional mechanisms of selected PHs. The treatment modulated the multi-layer regulation process that involved the ethylene precursor and polyamines and affected the ROS-mediated signaling pathways. Although further investigation is needed to strengthen our findings, metabolomic data suggest that treated plants experienced a metabolic reprogramming following the application of the tested biostimulants. Nonetheless, our experimental data highlight the potential for combined use of high-throughput phenotyping and metabolomics to facilitate the screening of new substances with biostimulant properties and to provide a morpho-physiological and metabolomic gateway to the mechanisms underlying PHs action on plants.
Journal Article
A Combined Phenotypic and Metabolomic Approach for Elucidating the Biostimulant Action of a Plant-Derived Protein Hydrolysate on Tomato Grown Under Limited Water Availability
by
Bonini, Paolo
,
Panzarová, Klára
,
Rouphael, Youssef
in
Abiotic stress
,
Accumulation
,
Agricultural production
2019
Plant-derived protein hydrolysates (PHs) are an important category of biostimulants able to increase plant growth and crop yield especially under environmental stress conditions. PHs can be applied as foliar spray or soil drench. Foliar spray is generally applied to achieve a relatively short-term response, whereas soil drench is used when a long-term effect is desired. The aim of the study was to elucidate the biostimulant action of PH application method (foliar spray or substrate drench) on morpho-physiological traits and metabolic profile of tomato grown under limited water availability. An untreated control was also included. A high-throughput image-based phenotyping (HTP) approach was used to non-destructively monitor the crop response under limited water availability (40% of container capacity) in a controlled environment. Moreover, metabolic profile of leaves was determined at the end of the trial. Dry biomass of shoots at the end of the trial was significantly correlated with number of green pixels (
= 0.90) and projected shoot area, respectively. Both drench and foliar treatments had a positive impact on the digital biomass compared to control while the photosynthetic performance of the plants was slightly influenced by treatments. Overall drench application under limited water availability more positively influenced biomass accumulation and metabolic profile than foliar application. Significantly higher transpiration use efficiency was observed with PH-drench applications indicating better stomatal conductance. The mass-spectrometry based metabolomic analysis allowed the identification of distinct biochemical signatures in PH-treated plants. Metabolomic changes involved a wide and organized range of biochemical processes that included, among others, phytohormones (notably a decrease in cytokinins and an accumulation of salicylates) and lipids (including membrane lipids, sterols, and terpenes). From a general perspective, treated tomato plants exhibited an improved tolerance to reactive oxygen species (ROS)-mediated oxidative imbalance. Such capability to cope with oxidative stress might have resulted from a coordinated action of signaling compounds (salicylic acid and hydroxycinnamic amides), radical scavengers such as carotenoids and prenyl quinones, as well as a reduced biosynthesis of tetrapyrrole coproporphyrins.
Journal Article
Organic Fertilizer Sources Distinctively Modulate Productivity, Quality, Mineral Composition, and Soil Enzyme Activity of Greenhouse Lettuce Grown in Degraded Soil
by
Cardarelli, Mariateresa
,
Rouphael, Youssef
,
Colla, Giuseppe
in
Acid phosphatase
,
agronomic traits
,
Agronomy
2023
Intensive greenhouse vegetable production is often associated with a decline of crop productivity due to the increase of soil salinity and/or a reduction of biological fertility. The aim of the current work was to assess the effects of three organic fertilizers on morpho-physiological and agronomic traits of greenhouse lettuce as well as soil enzyme activity under poor soil quality conditions. The tested organic fertilizers (poultry manure, vinasse-based fertilizer, and insect’s frass fertilizer) were applied pre-planting at the same equivalent nitrogen (N) rate (90 kg N ha−1). Laboratory incubation assay results showed that vinasse-based fertilizer was the most suitable fertilizer in supplying the mineral N in the short term. All fertilizers increased shoot fresh and dry weight compared to unfertilized control with a more pronounced effect (+75%) with vinasse-based fertilizer and insect’s frass. Insect frass reduced by 27% the leaf nitrate concentration in comparison with the other treatments. The toxic heavy metal Pb was 46% lower in all organically fertilized lettuce leaves. Soil enzymatic activities of acid phosphatase, alkaline phosphatase, arylsulfatase (ArS), N-acetyl-β-D-glucosaminidase (NAGase), dehydrogenase, and total hydrolase (THA) were enhanced by poultry manure and insect’s frass in comparison with unfertilized control while vinasse-based fertilizer increased ArS, NAGase, and THA. Taken together, our data demonstrate that the application of organic fertilizers especially vinasse-based fertilizer and insect’s frass during intensive crop production is a suitable approach for mitigating the negative impact of soil salinity, enhancing soil biological fertility, and improving agronomic performance of greenhouse lettuce.
Journal Article