Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
43
result(s) for
"Bonneau, Benjamin"
Sort by:
IRBIT controls apoptosis by interacting with the Bcl-2 homolog, Bcl2l10, and by promoting ER-mitochondria contact
2016
IRBIT is a molecule that interacts with the inositol 1,4,5-trisphosphate (IP3)-binding pocket of the IP3 receptor (IP3R), whereas the antiapoptotic protein, Bcl2l10, binds to another part of the IP3-binding domain. Here we show that Bcl2l10 and IRBIT interact and exert an additive inhibition of IP3R in the physiological state. Moreover, we found that these proteins associate in a complex in mitochondria-associated membranes (MAMs) and that their interplay is involved in apoptosis regulation. MAMs are a hotspot for Ca2+ transfer between endoplasmic reticulum (ER) and mitochondria, and massive Ca2+ release through IP3R in mitochondria induces cell death. We found that upon apoptotic stress, IRBIT is dephosphorylated, becoming an inhibitor of Bcl2l10. Moreover, IRBIT promotes ER mitochondria contact. Our results suggest that by inhibiting Bcl2l10 activity and promoting contact between ER and mitochondria, IRBIT facilitates massive Ca2+ transfer to mitochondria and promotes apoptosis. This work then describes IRBIT as a new regulator of cell death.
Journal Article
Splicing variation of Long-IRBIT determines the target selectivity of IRBIT family proteins
by
Hirose, Matsumi
,
Kawaai, Katsuhiro
,
Mizutani, Akihiro
in
Adenosylhomocysteinase - genetics
,
Adenosylhomocysteinase - metabolism
,
Alternative splicing
2017
IRBIT [inositol 1,4,5-trisphosphate receptor (IP₃R) binding protein released with inositol 1,4,5-trisphosphate (IP₃)] is a multifunctional protein that regulates several target molecules such as ion channels, transporters, polyadenylation complex, and kinases. Through its interaction with multiple targets, IRBIT contributes to calcium signaling, electrolyte transport, mRNA processing, cell cycle, and neuronal function. However, the regulatory mechanism of IRBIT binding to particular targets is poorly understood. Long-IRBIT is an IRBIT homolog with high homology to IRBIT, except for a unique N-terminal appendage. Long-IRBIT splice variants have different N-terminal sequences and a common C-terminal region, which is involved in multimerization of IRBIT and Long-IRBIT. In this study, we characterized IRBIT and Long-IRBIT splice variants (IRBIT family). We determined that the IRBIT family exhibits different mRNA expression patterns in various tissues. The IRBIT family formed homo- and heteromultimers. In addition, N-terminal splicing of Long-IRBIT changed the protein stability and selectivity to target molecules. These results suggest that N-terminal diversity of the IRBIT family and various combinations of multimer formation contribute to the functional diversity of the IRBIT family.
Journal Article
Bcl-wav and the mitochondrial calcium uniporter drive gastrula morphogenesis in zebrafish
by
Gadet, Rudy
,
Lopez, Jonathan
,
Popgeorgiev, Nikolay
in
631/136/1660/2127
,
631/80/86
,
Actins - genetics
2013
Bcl-2 proteins are acknowledged as key regulators of programmed cell death. However, increasing data suggest additional roles, including regulation of the cell cycle, metabolism and cytoskeletal dynamics. Here we report the discovery and characterization of a new Bcl-2-related multidomain apoptosis accelerator, Bcl-wav, found in fish and frogs. Genetic and molecular studies in zebrafish indicate that Bcl-wav and the recently identified mitochondrial calcium uniporter (MCU) contribute to the formation of the notochord axis by controlling blastomere convergence and extension movements during gastrulation. Furthermore, we found that Bcl-wav controls intracellular Ca
2+
trafficking by acting on the mitochondrial voltage-dependent anion channel, and possibly on MCU, with direct consequences on actin microfilament dynamics and blastomere migration guidance. Thus, from an evolutionary point of view, the original function of Bcl-2 proteins might have been to contribute in controlling the global positioning system of blastomeres during gastrulation, a critical step in metazoan development.
Ca
2+
is an intracellular messenger that has a critical role in zebrafish development. Here Prudent
et al
. show that during gastrulation, the newly identified Bcl-2 homologue, Bcl-wav and the mitochondrial calcium uniporter regulate cell migration by controlling mitochondrial Ca
2+
storage.
Journal Article
Calcineurin-Dependent Homeostatic Response of C. elegans Muscle Cells upon Prolonged Activation of Acetylcholine Receptors
by
Briseño-Roa, Luis
,
Bessereau, Jean-Louis
,
Jospin, Maëlle
in
acetylcholine receptor
,
Adaptation
,
C. elegans
2023
Pharmacological adaptation is a common phenomenon observed during prolonged drug exposure and often leads to drug resistance. Understanding the cellular events involved in adaptation could provide new strategies to circumvent this resistance issue. We used the nematode Caenorhabditis elegans to analyze the adaptation to levamisole, an ionotropic acetylcholine receptor agonist, used for decades to treat nematode parasitic infections. Genetic screens in C. elegans identified “adapting mutants” that initially paralyze upon exposure to levamisole as the wild type (WT), but recover locomotion after a few hours whereas WT remain paralyzed. Here, we show that levamisole induces a sustained increase in cytosolic calcium concentration in the muscle cells of adapting mutants, lasting several hours and preceding a decrease in levamisole-sensitive acetylcholine receptors (L-AChR) at the muscle plasma membrane. This decrease correlated with a drop in calcium concentration, a relaxation of the animal’s body and a resumption of locomotion. The decrease in calcium and L-AChR content depends on calcineurin activation in muscle cells. We also showed that levamisole adaptation triggers homeostatic mechanisms in muscle cells including mitochondria remodeling, lysosomal tubulation and an increase in autophagic activity. Levamisole adaptation thus provides a new experimental paradigm for studying how cells cope with calcium stress.
Journal Article
IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues
by
Hirose, Matsumi
,
Itoh, Toshiki
,
Kawaai, Katsuhiro
in
Adenosine Triphosphate - metabolism
,
Amino Acid Sequence
,
Animals
2015
Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3- cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2.
Journal Article
An extracellular scaffolding complex confers unusual rectification upon an ionotropic acetylcholine receptor in C. elegans
by
Bessereau, Jean-Louis
,
Jospin, Maëlle
,
Lainé, Viviane
in
Acetylcholine - metabolism
,
Animals
,
Antinematodal Agents - pharmacology
2022
Biophysical properties of ligand-gated receptors can be profoundly modified by auxiliary subunits or by the lipid microenvironment of the membrane. Hence, it is sometimes challenging to relate the properties of receptors reconstituted in heterologous expression systems to those of their native counterparts. Here we show that the properties of Caenorhabditis elegans levamisole-sensitive acetylcholine receptors (L-AChRs), the ionotropic acetylcholine receptors targeted by the cholinergic anthelmintic levamisole at neuromuscular junctions, can be profoundly modified by their clustering machinery. We uncovered that L-AChRs exhibit a strong outward rectification in vivo, which was not previously described in heterologous systems. This unusual feature for an ionotropic AChR is abolished by disrupting the interaction of the receptors with the extracellular complex required for their synaptic clustering. When recorded at 260 mV, levamisole-induced currents are similar in the wild type and in L-AChR-clustering– defective mutants, while they are halved in these mutants at more depolarized physiological membrane potentials. Consequently, levamisole causes a strong muscle depolarization in the wild type, which leads to complete inactivation of the voltage-gated calcium channels and to an irreversible flaccid paralysis. In mutants defective for L-AChR clustering, the levamisole-induced depolarization is weaker, allowing voltage-gated calcium channels to remain partially active, which eventually leads to adaptation and survival of the worms. This explains why historical screens for C. elegans mutants resistant to levamisole identified the components of the L-AChR clustering machinery, in addition to proteins required for receptor biosynthesis or efficacy. This work further emphasizes the importance of pursuing ligand-gated channel characterization in their native environment.
Journal Article
DAF‐2/insulin IGF‐1 receptor regulates motility during aging by integrating opposite signaling from muscle and neuronal tissues
2022
During aging, preservation of locomotion is generally considered an indicator of sustained good health, in elderlies and in animal models. In Caenorhabditis elegans, mutants of the insulin‐IGF‐1 receptor DAF2/IIRc represent a paradigm of healthy aging, as their increased lifespan is accompanied by a delay in age‐related loss of motility. Here, we investigated the DAF‐2/IIRc‐dependent relationship between longevity and motility using an auxin‐inducible degron to trigger tissue‐specific degradation of endogenous DAF‐2/IIRc. As previously reported, inactivation of DAF‐2/IIRc in neurons or intestine was sufficient to extend the lifespan of worms, whereas depletion in epidermis, germline, or muscle was not. However, neither intestinal nor neuronal depletion of DAF‐2/IIRc prevented the age‐related loss of motility. In 1‐day‐old adults, DAF‐2/IIRc depletion in neurons reduced motility in a DAF‐16/FOXO dependent manner, while muscle depletion had no effect. By contrast, DAF‐2 depletion in the muscle of middle‐age animals improved their motility independently of DAF‐16/FOXO but required UNC‐120/SRF. Yet, neuronal or muscle DAF‐2/IIRc depletion both preserved the mitochondria network in aging muscle. Overall, these results show that the motility pattern of daf‐2 mutants is determined by the sequential and opposing impact of neurons and muscle tissues and can be dissociated from the regulation of the lifespan. This work also provides the characterization of a versatile tool to analyze the tissue‐specific contribution of insulin‐like signaling in integrated phenotypes at the whole organism level. In C. elegans, age‐associated regulation of motility by the DAF‐2/insulin‐IGF‐1 receptor is determined by the sequential and opposing impact of neurons and muscle and can be dissociated from the lifespan phenotype. Intestinal and neuronal DAF‐2 activities modulate lifespan, whereas muscle DAF‐2 does not. Neuronal DAF‐2 promotes motility in early adulthood through inhibition of DAF‐16/FOXO, whereas muscle DAF‐2 decreases motility in middle age through inactivation of UNC‐120/SRF.
Journal Article
Calcineurin-Dependent Homeostatic Response of IC. elegans/I Muscle Cells upon Prolonged Activation of Acetylcholine Receptors
by
Briseño-Roa, Luis
,
Bessereau, Jean-Louis
,
Jospin, Maëlle
in
Analysis
,
Care and treatment
,
Diagnosis
2023
Pharmacological adaptation is a common phenomenon observed during prolonged drug exposure and often leads to drug resistance. Understanding the cellular events involved in adaptation could provide new strategies to circumvent this resistance issue. We used the nematode Caenorhabditis elegans to analyze the adaptation to levamisole, an ionotropic acetylcholine receptor agonist, used for decades to treat nematode parasitic infections. Genetic screens in C. elegans identified “adapting mutants” that initially paralyze upon exposure to levamisole as the wild type (WT), but recover locomotion after a few hours whereas WT remain paralyzed. Here, we show that levamisole induces a sustained increase in cytosolic calcium concentration in the muscle cells of adapting mutants, lasting several hours and preceding a decrease in levamisole-sensitive acetylcholine receptors (L-AChR) at the muscle plasma membrane. This decrease correlated with a drop in calcium concentration, a relaxation of the animal’s body and a resumption of locomotion. The decrease in calcium and L-AChR content depends on calcineurin activation in muscle cells. We also showed that levamisole adaptation triggers homeostatic mechanisms in muscle cells including mitochondria remodeling, lysosomal tubulation and an increase in autophagic activity. Levamisole adaptation thus provides a new experimental paradigm for studying how cells cope with calcium stress.
Journal Article
IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Ialpha and IIalpha through Conserved Catalytic Aspartate Residues
2015
Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P.sub.2 ), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP.sub.3 R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type I[alpha] (PIPKI[alpha]) and type II[alpha] (PIPKII[alpha]) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKI[alpha] and PIPKII[alpha] are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg.sup.2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKI[alpha] and PIPKII[alpha]. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKI[alpha] interact with the Na.sup.+ /HCO.sub.3 .sup.- cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKI[alpha] and NBCe1-B, whose activity is regulated by PI(4,5)P.sub.2.
Journal Article
Towards Trustworthy Automated Program Verifiers: Formally Validating Translations into an Intermediate Verification Language (extended version)
by
Müller, Peter
,
Summers, Alexander J
,
Thibault Dardinier
in
Automation
,
Methodology
,
Semantics
2024
Automated program verifiers are typically implemented using an intermediate verification language (IVL), such as Boogie or Why3. A verifier front-end translates the input program and specification into an IVL program, while the back-end generates proof obligations for the IVL program and employs an SMT solver to discharge them. Soundness of such verifiers therefore requires that the front-end translation faithfully captures the semantics of the input program and specification in the IVL program, and that the back-end reports success only if the IVL program is actually correct. For a verification tool to be trustworthy, these soundness conditions must be satisfied by its actual implementation, not just the program logic it uses. In this paper, we present a novel validation methodology that, given a formal semantics for the input language and IVL, provides formal soundness guarantees for front-end implementations. For each run of the verifier, we automatically generate a proof in Isabelle showing that the correctness of the produced IVL program implies the correctness of the input program. This proof can be checked independently from the verifier, in Isabelle, and can be combined with existing work on validating back-ends to obtain an end-to-end soundness result. Our methodology based on forward simulation employs several modularisation strategies to handle the large semantic gap between the input language and the IVL, as well as the intricacies of practical, optimised translations. We present our methodology for the widely-used Viper and Boogie languages. Our evaluation shows that it is effective in validating the translations performed by the existing Viper implementation.