Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Bonnefoy, Lea E."
Sort by:
Surface properties of the seas of Titan as revealed by Cassini mission bistatic radar experiments
Saturn’s moon Titan was explored by the Cassini spacecraft from 2004 to 2017. While Cassini revealed a lot about this Earth-like world, its radar observations could only provide limited information about Titan’s liquid hydrocarbons seas Kraken, Ligeia and Punga Mare. Here, we show the results of the analysis of the Cassini mission bistatic radar experiments data of Titan’s polar seas. The dual-polarized nature of bistatic radar observations allow independent estimates of effective relative dielectric constant and small-scale roughness of sea surface, which were not possible via monostatic radar data. We find statistically significant variations in effective dielectric constant (i.e., liquid composition), consistent with a latitudinal dependence in the methane-ethane mixing-ratio. The results on estuaries suggest lower values than the open seas, compatible with methane-rich rivers entering seas with higher ethane content. We estimate small-scale roughness of a few millimeters from the almost purely coherent scattering from the sea surface, hinting at the presence of capillary waves. This roughness is concentrated near estuaries and inter-basin straits, perhaps indicating active tidal currents. It’s known that Saturn’s largest moon Titan has liquids on its surface. Here, the authors show bistatic investigation of Titan’s three polar lakes, which allows direct estimates of effective relative dielectric constant and small-scale roughness.
Microwave Observations of Ganymede's Sub‐surface Ice: 2. Reflected Radiation
Juno's microwave radiometer experiment (MWR) provided the first spatially resolved observations beneath the surface of Ganymede's ice shell. The results indicate that scattering is a significant component of the observed brightness temperature, which is a combination of the upwelling ice emission and reflected emission from the sky and from Jupiter's synchrotron emission (Brown et al., 2023). Retrieval of the sub‐surface ice temperature profile requires that these confounding signals are estimated and removed to isolate the thermal signature of the ice. We present data analysis and model results to estimate the reflected synchrotron emission component. Our results indicate reflected emission over a broad range of observed angles, due to surface roughness and internal scattering. Based on viewing geometry, direct specular reflection from a smooth surface at a narrow angle is not observed. A microwave‐reflective medium is indicated, that is, a very rough surface and/or non‐homogeneous subsurface. Plain Language Summary On 7 June 2021, Juno had a close flyby of Jupiter's moon Ganymede, flying approximately 1,000 km above the surface. During the flyby, Juno's six channel Microwave Radiometer (MWR) mapped a portion of Ganymede, providing the first resolved observations of Ganymede's sub‐surface ice shell. The observed brightness temperature is composed of upwelling thermal emission from the ice shell and reflected radiation from the sky and from Jupiter's synchrotron emission. To study the sub‐surface ice shell temperature profile, we present data analysis and model results to estimate the reflected radiation component. The radiation is reflected diffusively by a very rough surface and/or non‐homogeneous subsurface. Key Points Reflected radiation from the sky and from Jupiter's synchrotron is an important component for Juno microwave radiometer experiment (MWR) observations at 0.6 and 1.2 GHz Absence of specular reflection indicating that Ganymede has a rough surface Reflections originate mostly from internal scattering
Probing the subsurface of the two faces of Iapetus
Saturn’s moon Iapetus, which is in synchronous rotation, is covered by an optically dark material mainly on its leading side, while its trailing side is significantly brighter. Because longer wavelengths probe deeper into the subsurface, observing both sides at a variety of wavelengths brings to light possible changes in thermal, compositional, and physical properties with depth. We have observed Iapetus’s leading and trailing hemispheres at 1.2 and 2.0 mm, using the NIKA2 camera mounted on the IRAM 30-m telescope, and compared our observations to others performed at mm to cm wavelengths. We calibrate our observations on Titan, which is simultaneously observed within the field of view. Due to the proximity of Saturn, it is sometimes difficult to separate Iapetus’s and Titan’s flux from that of Saturn, detected in the telescope’s side lobes. Preliminary results show that the trailing hemisphere brightness temperatures at the two wavelengths are equal within error bars, unlike the prediction made by Ries (2012)[1]. On the leading side, we report a steep spectral slope of increasing brightness temperature (by 10 K) from 1.2 to 2.0 mm, which may indicate rapidly varying emissivities within the top few centimeters of the surface. Comparison to a diffuse scattering model and a thermal model will be necessary to further constrain the thermophysical properties of the subsurface of Iapetus’s two faces.
Probing the subsurface of the two faces of Iapetus
Saturn's moon Iapetus, which is in synchronous rotation, is covered by an optically dark material mainly on its leading side, while its trailing side is significantly brighter. Because longer wavelengths probe deeper into the subsurface, observing both sides at a variety of wavelengths brings to light possible changes in thermal, compositional, and physical properties with depth. We have observed Iapetus's leading and trailing hemispheres at 1.2 and 2.0 mm, using the NIKA2 camera mounted on the IRAM 30-m telescope, and compared our observations to others performed at mm to cm wavelengths. We calibrate our observations on Titan, which is simultaneously observed within the field of view. Due to the proximity of Saturn, it is sometimes difficult to separate Iapetus's and Titan's flux from that of Saturn, detected in the telescope's side lobes. Preliminary results show that the trailing hemisphere brightness temperatures at the two wavelengths are equal within error bars, unlike the prediction made by Ries (2012). On the leading side, we report a steep spectral slope of increasing brightness temperature (by 10 K) from 1.2 to 2.0 mm, which may indicate rapidly varying emissivities within the top few centimeters of the surface. Comparison to a diffuse scattering model and a thermal model will be necessary to further constrain the thermophysical properties of the subsurface of Iapetus's two faces.
Impact of RAS Mutations in Metastatic Colorectal Cancer After Potentially Curative Resection: Does Site of Metastases Matter?
BackgroundRAS mutation status is an important prognostic factor after resection of liver metastases (LiM) from colorectal cancer (CRC). The prognostic significance of RAS after resection of lung (LuM) and peritoneal (PM) metastases from CRC is unknown.MethodsBetween 2005 and 2014, all consecutive patients with known RAS status who underwent potentially curative resection for LiM, LuM, or PM were evaluated.ResultsA total of 720 patients with known RAS status underwent resection of LiM (n = 468), LuM (n = 102), and PM (n = 150). RAS mutations were identified in 63 and 58% of patients with LuM and PM, respectively, compared with 41% of patients with LiM (p < 0.001). Five-year overall survival (OS) after resection of PM was 45%, compared with 52% after resection of LiM (p = 0.018) and 64% after resection of LuM (p = 0.005). RAS mutations were associated with significantly worse OS after resection of LiM (p < 0.001), but did not affect OS among patients undergoing resection of LuM (p = 0.41) and PM (p = 0.65).ConclusionsRAS mutations are more prevalent among patients undergoing resection of LuM and PM than LiM but do not affect survival after lung and peritoneal metastasectomy, as they do after hepatectomy. These results suggest that the prognostic significance of RAS mutations after resection of metastatic CRC depends on the specific site of metastases.
197 Candidates and 104 Validated Planets in K2's First Five Fields
We present 197 planet candidates discovered using data from the first year of the NASA K2 mission (Campaigns 0-4), along with the results of an intensive program of photometric analyses, stellar spectroscopy, high-resolution imaging, and statistical validation. We distill these candidates into sets of 104 validated planets (57 in multi-planet systems), 30 false positives, and 63 remaining candidates. Our validated systems span a range of properties, with median values of R_P = 2.3 R_E, P=8.6 d, Tef = 5300 K, and Kp=12.7 mag. Stellar spectroscopy provides precise stellar and planetary parameters for most of these systems. We show that K2 has increased by 30% the number of small planets known to orbit moderately bright stars (1-4 R_E, Kp=9-13 mag). Of particular interest are 37 planets smaller than 2 R_E, 15 orbiting stars brighter than Kp=11.5, five receiving Earth-like irradiation levels, and several multi-planet systems -- including four planets orbiting the M dwarf K2-72 near mean-motion resonances. By quantifying the likelihood that each candidate is a planet we demonstrate that our candidate sample has an overall false positive rate of 15-30%, with rates substantially lower for small candidates (< 2 R_E) and larger for candidates with radii > 8 R_E and/or with P < 3 d. Extrapolation of the current planetary yield suggests that K2 will discover between 500-1000 planets in its planned four-year mission -- assuming sufficient follow-up resources are available. Efficient observing and analysis, together with an organized and coherent follow-up strategy, is essential to maximize the efficacy of planet-validation efforts for K2, TESS, and future large-scale surveys.