Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"Boom, Michiel P"
Sort by:
Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese
by
Zaynagutdinova, Elmira
,
Nolet, Bart A
,
Schreven, Kees H. T
in
Accelerometers
,
Annual cycles
,
Annual variations
2023
Performing migratory journeys comes with energetic costs, which have to be compensated within the annual cycle. An assessment of how and when such compensation occurs is ideally done by comparing full annual cycles of migratory and non-migratory individuals of the same species, which is rarely achieved. We studied free-living migratory and resident barnacle geese belonging to the same flyway (metapopulation), and investigated when differences in foraging activity occur, and when foraging extends beyond available daylight, indicating a diurnal foraging constraint in these usually diurnal animals. We compared foraging activity of migratory (N = 94) and resident (N = 30) geese throughout the annual cycle using GPS-transmitters and 3D-accelerometers, and corroborated this with data on seasonal variation in body condition. Migratory geese were more active than residents during most of the year, amounting to a difference of over 370 h over an entire annual cycle. Activity differences were largest during the periods that comprised preparation for spring and autumn migration. Lengthening days during spring facilitated increased activity, which coincided with an increase in body condition. Both migratory and resident geese were active at night during winter, but migratory geese were also active at night before autumn migration, resulting in a period of night-time activity that was 6 weeks longer than in resident geese. Our results indicate that, at least in geese, seasonal migration requires longer daily activity not only during migration but throughout most of the annual cycle, with migrants being more frequently forced to extend foraging activity into the night.
Journal Article
Climate warming may affect the optimal timing of reproduction for migratory geese differently in the low and high Arctic
by
Nolet, Bart A.
,
van der Jeugd, Henk P.
,
Prop, Jouke
in
Animal breeding
,
Aquatic birds
,
Arctic region
2019
Rapid climate warming is driving organisms to advance timing of reproduction with earlier springs, but the rate of advancement shows large variation, even among populations of the same species. In this study, we investigated how the rate of advancement in timing of reproduction with a warming climate varies for barnacle goose (Branta leucopsis) populations breeding at different latitudes in the Arctic. We hypothesized that populations breeding further North are generally more time constrained and, therefore, produce clutches earlier relative to the onset of spring than southern populations. Therefore, with increasing temperatures and a progressive relief of time constraint, we expected latitudinal differences to decrease. For the years 2000–2016, we determined the onset of spring from snow cover data derived from satellite images, and compiled data on egg laying date and reproductive performance in one low-Arctic and two high-Arctic sites. As expected, high-Arctic geese laid their eggs earlier relative to snowmelt than low-Arctic geese. Contrary to expectations, advancement in laying dates was similar in high- and low-Arctic colonies, at a rate of 27% of the advance in date of snowmelt. Although advancement of egg laying did not fully compensate for the advancement of snowmelt, geese laying eggs at intermediate dates in the low Arctic were the most successful breeders. In the high Arctic, however, early nesting geese were the most successful breeders, suggesting that high-Arctic geese have not advanced their laying dates sufficiently to earlier springs. This indicates that high-Arctic geese especially are vulnerable to negative effects of climate warming.
Journal Article
Contrasting effects of the onset of spring on reproductive success of Arctic-nesting geese
by
Nolet, Bart A.
,
Schreven, Kees H. T.
,
Boom, Michiel P.
in
Animal reproduction
,
Anseriformes
,
Aquatic birds
2019
Breeding output of geese, measured as the proportion of juveniles in autumn or winter flocks, is lower in years with a late onset of spring in some species, but higher in at least one other species. Here we argue that this is because the timing of spring affects different stages of the reproductive cycle differently in different species. Because the effects on 2 different stages are opposite, the combined effects can result in either a positive or a negative overall effect. These stages are the pre-laying, laying, and nesting phase on the one hand; and the hatchling, fledgling, and juvenile phase on the other hand. The first phase is predominantly positively affected by an early snowmelt, with higher breeding propensity, clutch size, and nest success. The second phase in contrast is negatively affected by early snowmelt because of a mismatch with a nutrient food peak, leading to slow gosling growth and reduced survival. We argue that recognition of this chain of events is crucial when one wants to predict goose productivity and eventually goose population dynamics. In a rapidly warming Arctic, the negative effects of a mismatch might become increasingly important.
Journal Article
Making better use of tracking data can reveal the spatiotemporal and intraspecific variability of species distributions
2025
Understanding geographic ranges and species distributions is crucial for effective conservation, especially in the light of climate and land use change. However, the spatial, temporal and intraspecific resolution of digital accessible information on species distributions is often limited. Here, we suggest to make better use of high‐resolution tracking data to address existing limitations of occurrence records such as spatial biases (e.g. lack of observations in parts of the geographic range), temporal biases (e.g. lack of observations during a certain period of the year), and insufficient information on intraspecific variability (e.g. lack of population‐ or individual‐level variation). Addressing these gaps can improve our knowledge on geographic ranges, intra‐annual changes in species distributions, and population‐level differences in habitat and space use. We demonstrate this with tracking data and species distribution models (SDMs) of the barnacle goose, a migratory bird species wintering in western Europe and breeding in the Arctic. Our analyses show that tracking data can 1) supplement occurrence records from the Global Biodiversity Information Facility (GBIF) in remote areas such as the European and Russian Arctic, 2) improve information on the temporal use of wintering, staging and breeding areas of migratory species and 3) be used to reveal distribution patterns at the population level. We recommend a broader use of tracking data to address the Wallacean shortfall (i.e. the incomplete knowledge on the geographic distribution of species) and to improve forecasts of biodiversity responses to climate and land use change (e.g. species vulnerability assessments). To avoid common pitfalls, we provide six recommendations for consideration during the research cycle when using tracking data in species distribution modelling, including steps to assess biases and integrate information on intraspecific variability in modelling approaches.
Journal Article
Pollination and fruit infestation under artificial light at night:light colour matters
2020
Rapid human population growth and associated urbanization lead to increased artificial illumination of the environment. By changing the natural light–dark cycle, artificial lighting can affect the functioning of natural ecosystems. Many plants rely on insects in order to reproduce but these insects are known to be disturbed by artificial light. Therefore, plant–insect interactions may be affected when exposed to artificial illumination. These effects can potentially be reduced by using different light spectra than white light. We studied the effect of artificial lighting on plant–insect interactions in the
Silene latifolia
–
Hadena bicruris
system using a field set-up with four different light treatments: red, green, white and a dark control. We compared the proportion of fertilized flowers and fertilized ovules as well as the infestation of fruits by
Hadena bicruris,
a pollinating seed predator. We found no difference in the proportion of fertilized flowers among the treatments. The proportion of fruits infested by
H. bicruris
was however significantly higher under green and white light and a significantly lower proportion of fertilized ovules was found under green light. We show that artificial light with different colours impacts plant–insect interactions differently, with direct consequences for plant fitness.
Journal Article
Barnacle geese Branta leucopsis breeding on Novaya Zemlya: current distribution and population size estimated from tracking data
by
Litvin, Konstantin E
,
Nolet, Bart A
,
Schreven, Kees H. T
in
20th century
,
Aquatic birds
,
Bird migration
2023
The Russian breeding population of barnacle geese Branta leucopsis has shown a rapid increase in numbers since 1980, which has coincided with a southwest-wards breeding range expansion within the Russian Arctic. Here barnacle geese also started to occupy coastal and marsh land habitats, in which they were not know to nest on their traditional breeding grounds. While these changes have been well documented by studies and observations throughout the new breeding range of barnacle geese, observations are lacking from the traditional breeding grounds on Novaya Zemlya, as this area is remote and difficult to access. This is especially relevant given rapid climate warming in this area, which may impact local distribution and population size. We used GPS-tracking and behavioural biologging data from 46 individual barnacle geese captured on their wintering grounds to locate nest sites in the Russian Arctic and study nesting distribution in 2008–2010 and 2018–2020. Extrapolating from nest counts on Kolguev Island, we estimate the breeding population on Novaya Zemlya in 2018–2020 to range around 75,250 pairs although the confidence interval around this estimate was large. A comparison with the historical size of the barnacle goose population suggests an increase in the breeding population on Novaya Zemlya, corresponding with changes in other areas of the breeding range. Our results show that many barnacle geese on Novaya Zemlya currently nest on lowland tundra on Gusinaya Zemlya Peninsula. This region has been occupied by barnacle geese only since 1990 and appears to be mainly available for nesting in years with early spring. Tracking data are a valuable tool to increase our knowledge of remote locations, but counts of breeding individuals or nests are needed to further corroborate estimates of breeding populations based on tracking data.
Journal Article