Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
52
result(s) for
"Booth, Steven G"
Sort by:
Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia
by
Booth, Steven G
,
Teeling, Jessica L
,
Perry, V Hugh
in
Animals
,
Bacterial infections
,
Biological response modifiers
2012
Background
Systemic infection leads to generation of inflammatory mediators that result in metabolic and behavioural changes. Repeated or chronic systemic inflammation leads to a state of innate immune tolerance: a protective mechanism against overactivity of the immune system. In this study, we investigated the immune adaptation of microglia and brain vascular endothelial cells in response to systemic inflammation or bacterial infection.
Methods
Mice were given repeated doses of lipopolysaccharide (LPS) or a single injection of live
Salmonella typhimurium
. Inflammatory cytokines were measured in serum, spleen and brain, and microglial phenotype studied by immunohistochemistry. To assess priming of the innate immune response in the brain, mice were infected with
Salmonella typhimurium
and subsequently challenged with a focal unilateral intracerebral injection of LPS.
Results
Repeated systemic LPS challenges resulted in increased brain IL-1β, TNF-α and IL-12 levels, despite attenuated systemic cytokine production. Each LPS challenge induced significant changes in burrowing behaviour. In contrast, brain IL-1β and IL-12 levels in
Salmonella typhimurium
-infected mice increased over three weeks, with high interferon-γ levels in the circulation. Behavioural changes were only observed during the acute phase of the infection. Microglia and cerebral vasculature display an activated phenotype, and focal intracerebral injection of LPS four weeks after infection results in an exaggerated local inflammatory response when compared to non-infected mice.
Conclusions
These studies reveal that the innate immune cells in the brain do not become tolerant to systemic infection, but are primed instead. This may lead to prolonged and damaging cytokine production that may have a profound effect on the onset and/or progression of pre-existing neurodegenerative disease.
Journal Article
Systemic Inflammation Accelerates Changes in Microglial and Synaptic Markers in an Experimental Model of Chronic Neurodegeneration
by
Booth, Steven G
,
Chouhan, Joe K
,
Teeling, Jessica L
in
Alzheimer's disease
,
Animal cognition
,
Bacteria
2022
Bacterial infections are a common cause of morbidity and mortality in the elderly, and particularly in individuals with a neurodegenerative disease. Experimental models of neurodegeneration have shown that LPS-induced systemic inflammation increases neuronal damage, a process thought to be mediated by activation of ‘primed’ microglia. The effects of a real systemic bacterial infection on the innate immune cells in the brain and neuronal networks are less well described, and therefore, in this study we investigated the alterations in microglia activation and phenotype and synaptic markers in response to a low grade, live bacterial infection. Mice with or without a pre-existing prion-induced neurodegenerative disease were given a single systemic injection of live Salmonella typhimurium at early (8 weeks) or mid-stage (12 weeks) of disease progression. Immune activation markers CD11b and MHCII and pro-inflammatory cytokines were analysed four weeks post-infection. Systemic infection with S. typhimurium resulted in an exaggerated inflammatory response when compared to ME7 prion mice treated with saline. These changes to inflammatory markers were most pronounced at mid-stage disease. Analysis of synaptic markers in ME7 prion mice revealed a significant reduction of genes that are associated with early response in synaptic plasticity, extracellular matrix structure and post-synaptic density, but no further reduction following systemic infection. In contrast, analysis of activity-related neuronal receptors involved in development of learning and memory, such as Grm1 and Grin2a, showed a significant decrease in response to systemic bacterial challenge. These changes were observed early in the disease progression and correlate with reduced burrowing activity. The exaggerated innate immune activation and altered expression of genes linked to synaptic plasticity may contribute to the onset and/or progression of neurodegeneration.
Journal Article
Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments
by
Penfold, Christine A
,
Moreno-Vicente, Julia
,
Cragg, Mark S
in
Animals
,
antibodies
,
Antibodies, Monoclonal - pharmacology
2022
BackgroundDespite extensive clinical use, the mechanisms that lead to therapeutic resistance to anti-programmed cell-death (PD)-1 monoclonal antibodies (mAbs) remain elusive. Here, we sought to determine how interactions between the Fc region of anti-PD-1 mAbs and Fcγ receptors (FcγRs) affect therapeutic activity and how these are impacted by the immune environment.MethodsMouse and human anti-PD-1 mAbs with different Fc binding profiles were generated and characterized in vitro. The ability of these mAbs to elicit T-cell responses in vivo was first assessed in a vaccination setting using the model antigen ovalbumin. The antitumor activity of anti-PD-1 mAbs was investigated in the context of immune ‘hot’ MC38 versus ‘cold’ neuroblastoma tumor models, and flow cytometry performed to assess immune infiltration.ResultsEngagement of activating FcγRs by anti-PD-1 mAbs led to depletion of activated CD8 T cells in vitro and in vivo, abrogating therapeutic activity. Importantly, the extent of this Fc-mediated modulation was determined by the surrounding immune environment. Low FcγR-engaging mouse anti-PD-1 isotypes, which are frequently used as surrogates for human mAbs, were unable to expand ovalbumin-reactive CD8 T cells, in contrast to Fc-null mAbs. These results were recapitulated in mice expressing human FcγRs, in which clinically relevant hIgG4 anti-PD-1 led to reduced endogenous expansion of CD8 T cells compared with its engineered Fc-null counterpart. In the context of an immunologically ‘hot’ tumor however, both low-engaging and Fc-null mAbs induced long-term antitumor immunity in MC38-bearing mice. Finally, a similar anti-PD-1 isotype hierarchy was demonstrated in the less responsive ‘cold’ 9464D neuroblastoma model, where the most effective mAbs were able to delay tumor growth but could not induce long-term protection.ConclusionsOur data collectively support a critical role for Fc:FcγR interactions in inhibiting immune responses to both mouse and human anti-PD-1 mAbs, and highlight the context-dependent effect that anti-PD-1 mAb isotypes can have on T-cell responses. We propose that engineering of Fc-null anti-PD-1 mAbs would prevent FcγR-mediated resistance in vivo and allow maximal T-cell stimulation independent of the immunological environment.
Journal Article
HIF activation enhances FcγRIIb expression on mononuclear phagocytes impeding tumor targeting antibody immunotherapy
by
James, Sonya
,
Kemp, Robert S.
,
Strefford, Jonathan C.
in
Animals
,
Antibodies
,
Antibodies, Monoclonal - pharmacology
2022
Background
Hypoxia is a hallmark of the tumor microenvironment (TME) and in addition to altering metabolism in cancer cells, it transforms tumor-associated stromal cells. Within the tumor stromal cell compartment, tumor-associated macrophages (TAMs) provide potent pro-tumoral support. However, TAMs can also be harnessed to destroy tumor cells by monoclonal antibody (mAb) immunotherapy, through antibody dependent cellular phagocytosis (ADCP). This is mediated via antibody-binding activating Fc gamma receptors (FcγR) and impaired by the single inhibitory FcγR, FcγRIIb.
Methods
We applied a multi-OMIC approach coupled with in vitro functional assays and murine tumor models to assess the effects of hypoxia inducible factor (HIF) activation on mAb mediated depletion of human and murine cancer cells. For mechanistic assessments, siRNA-mediated gene silencing, Western blotting and chromatin immune precipitation were utilized to assess the impact of identified regulators on
FCGR2B
gene transcription.
Results
We report that TAMs are FcγRIIb
bright
relative to healthy tissue counterparts and under hypoxic conditions
,
mononuclear phagocytes markedly upregulate FcγRIIb. This enhanced FcγRIIb expression is transcriptionally driven through HIFs and Activator protein 1 (AP-1). Importantly, this phenotype reduces the ability of macrophages to eliminate anti-CD20 monoclonal antibody (mAb) opsonized human chronic lymphocytic leukemia cells in vitro and EL4 lymphoma cells in vivo in human FcγRIIb
+
/
+
transgenic mice. Furthermore, post-HIF activation, mAb mediated blockade of FcγRIIb can partially restore phagocytic function in human monocytes.
Conclusion
Our findings provide a detailed molecular and cellular basis for hypoxia driven resistance to antitumor mAb immunotherapy, unveiling a hitherto unexplored aspect of the TME. These findings provide a mechanistic rationale for the modulation of FcγRIIb expression or its blockade as a promising strategy to enhance approved and novel mAb immunotherapies.
Journal Article
HIF activation enhances FcgammaRIIb expression on mononuclear phagocytes impeding tumor targeting antibody immunotherapy
by
Carter, Matthew J
,
James, Sonya
,
Smith, Rosanna C. G
in
Analysis
,
Drug therapy
,
Genetic engineering
2022
Background Hypoxia is a hallmark of the tumor microenvironment (TME) and in addition to altering metabolism in cancer cells, it transforms tumor-associated stromal cells. Within the tumor stromal cell compartment, tumor-associated macrophages (TAMs) provide potent pro-tumoral support. However, TAMs can also be harnessed to destroy tumor cells by monoclonal antibody (mAb) immunotherapy, through antibody dependent cellular phagocytosis (ADCP). This is mediated via antibody-binding activating Fc gamma receptors (Fc[gamma]R) and impaired by the single inhibitory Fc[gamma]R, Fc[gamma]RIIb. Methods We applied a multi-OMIC approach coupled with in vitro functional assays and murine tumor models to assess the effects of hypoxia inducible factor (HIF) activation on mAb mediated depletion of human and murine cancer cells. For mechanistic assessments, siRNA-mediated gene silencing, Western blotting and chromatin immune precipitation were utilized to assess the impact of identified regulators on FCGR2B gene transcription. Results We report that TAMs are Fc[gamma]RIIb.sup.bright relative to healthy tissue counterparts and under hypoxic conditions, mononuclear phagocytes markedly upregulate Fc[gamma]RIIb. This enhanced Fc[gamma]RIIb expression is transcriptionally driven through HIFs and Activator protein 1 (AP-1). Importantly, this phenotype reduces the ability of macrophages to eliminate anti-CD20 monoclonal antibody (mAb) opsonized human chronic lymphocytic leukemia cells in vitro and EL4 lymphoma cells in vivo in human Fc[gamma]RIIb.sup.+/+ transgenic mice. Furthermore, post-HIF activation, mAb mediated blockade of Fc[gamma]RIIb can partially restore phagocytic function in human monocytes. Conclusion Our findings provide a detailed molecular and cellular basis for hypoxia driven resistance to antitumor mAb immunotherapy, unveiling a hitherto unexplored aspect of the TME. These findings provide a mechanistic rationale for the modulation of Fc[gamma]RIIb expression or its blockade as a promising strategy to enhance approved and novel mAb immunotherapies. Keywords: Hypoxia, Hypoxia inducible factors, Fc[gamma]RIIb, Fc gamma receptors, Tumor-associated macrophages, Monocytes, Monoclonal antibody, Tumor microenvironment, Resistance, Cancer
Journal Article
Harnessing multivalency and FcγRIIB engagement to augment anti-CD27 immunotherapy
2025
Despite significant clinical progress, checkpoint blockade remains limited by variable response rates, resistance, and toxicity. Activating costimulatory receptors offers a promising alternative to enhance anti-tumor immunity. However, there is insufficient understanding of how to mimic physiological membrane-anchored costimulatory ligands. Here, we describe a strategy for developing effective agonists of the costimulatory receptor CD27 by increasing both antibody valency and FcγRIIB engagement. Engineered anti-CD27 antibodies capable of tetravalent binding to CD27 and selective FcγRIIB association exhibit potent T cell stimulatory activity and anti-tumor efficacy in pre-clinical models, compared to bivalent counterparts. The anti-tumor effects of the tetravalent antibody are mediated through CD8⁺ T cell activation without evidence of regulatory T cell depletion. Mechanistically, whereas the increase in avidity drives more efficient CD27 clustering, FcγRIIB engagement triggers polarization of receptor clusters to the cell-cell interface and reduces receptor internalization. This work provides a framework for developing more effective agonist-based T cell stimulatory therapies.
Journal Article
BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment
by
Booth, Brian G.
,
Miller, Steven P.
,
Grunau, Ruth E.
in
Alzheimer's disease
,
Babies
,
Brain - diagnostic imaging
2017
We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain.
•First deep convolutional neural network architecture designed for connectomes.•Novel convolutional layers for leveraging topological locality in brain networks.•Prediction of neurodevelopmental outcomes in preterm infants.•Visualization of brain connections learned to be important for prediction.
Journal Article
Understanding relationships among ecosystem services across spatial scales and over time
by
Carpenter, Stephen R
,
Motew, Melissa
,
Booth, Eric G
in
Agricultural land
,
agricultural landscape
,
Annual variations
2018
Sustaining ecosystem services (ES), mitigating their tradeoffs and avoiding unfavorable future trajectories are pressing social-environmental challenges that require enhanced understanding of their relationships across scales. Current knowledge of ES relationships is often constrained to one spatial scale or one snapshot in time. In this research, we integrated biophysical modeling with future scenarios to examine changes in relationships among eight ES indicators from 2001-2070 across three spatial scales-grid cell, subwatershed, and watershed. We focused on the Yahara Watershed (Wisconsin) in the Midwestern United States-an exemplar for many urbanizing agricultural landscapes. Relationships among ES indicators changed over time; some relationships exhibited high interannual variations (e.g. drainage vs. food production, nitrate leaching vs. net ecosystem exchange) and even reversed signs over time (e.g. perennial grass production vs. phosphorus yield). Robust patterns were detected for relationships among some regulating services (e.g. soil retention vs. water quality) across three spatial scales, but other relationships lacked simple scaling rules. This was especially true for relationships of food production vs. water quality, and drainage vs. number of days with runoff >10 mm, which differed substantially across spatial scales. Our results also showed that local tradeoffs between food production and water quality do not necessarily scale up, so reducing local tradeoffs may be insufficient to mitigate such tradeoffs at the watershed scale. We further synthesized these cross-scale patterns into a typology of factors that could drive changes in ES relationships across scales: (1) effects of biophysical connections, (2) effects of dominant drivers, (3) combined effects of biophysical linkages and dominant drivers, and (4) artificial scale effects, and concluded with management implications. Our study highlights the importance of taking a dynamic perspective and accounting for spatial scales in monitoring and management to sustain future ES.
Journal Article
Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape
by
Chen, Xi
,
Motew, Melissa
,
Zipper, Samuel C.
in
agricultural land
,
Agriculture
,
alternative futures
2018
Sustaining food production, water quality, soil retention, flood, and climate regulation in agricultural landscapes is a pressing global challenge given accelerating environmental changes. Scenarios are stories about plausible futures, and scenarios can be integrated with biophysical simulation models to explore quantitatively how the future might unfold. However, few studies have incorporated a wide range of drivers (e.g., climate, land-use, management, population, human diet) in spatially explicit, process-based models to investigate spatial-temporal dynamics and relationships of a portfolio of ecosystem services. Here, we simulated nine ecosystem services (three provisioning and six regulating services) at 220 × 220 m from 2010 to 2070 under four contrasting scenarios in the 1,345-km² Yahara Watershed (Wisconsin, USA) using Agro-IBIS, a dynamic model of terrestrial ecosystem processes, biogeochemistry, water, and energy balance. We asked (1) How does ecosystem service supply vary among alternative future scenarios? (2) Where on the landscape is the provision of ecosystem services most susceptible to future social-ecological changes? (3) Among alternative future scenarios, are relationships (i.e., trade-offs, synergies) among food production, water, and biogeochemical services consistent over time? Our results showed that food production varied substantially with future land-use choices and management, and its trade-offs with water quality and soil retention persisted under most scenarios. However, pathways to mitigate or even reverse such trade-offs through technological advances and sustainable agricultural practices were apparent. Consistent relationships among regulating services were identified across scenarios (e.g., trade-offs of freshwater supply vs. flood and climate regulation, and synergies among water quality, soil retention, and climate regulation), suggesting opportunities and challenges to sustaining these services. In particular, proactive land-use changes and management may buffer water quality against undesirable future climate changes, but changing climate may overwhelm management efforts to sustain freshwater supply and flood regulation. Spatially, changes in ecosystem services were heterogeneous across the landscape, underscoring the power of local actions and fine-scale management. Our research highlights the value of embracing spatial and temporal perspectives in managing ecosystem services and their complex interactions, and provides a system-level understanding for achieving sustainability of the food–water–climate nexus in agricultural landscapes.
Journal Article
Influenza Vaccine Effectiveness in Preventing Influenza-associated Hospitalizations During Pregnancy: A Multi-country Retrospective Test Negative Design Study, 2010–2016
2019
Abstract
Background
To date, no study has examined influenza vaccine effectiveness (IVE) against laboratory-confirmed influenza-associated hospitalizations during pregnancy.
Methods
The Pregnancy Influenza Vaccine Effectiveness Network (PREVENT) consisted of public health or healthcare systems with integrated laboratory, medical, and vaccination records in Australia, Canada (Alberta and Ontario), Israel, and the United States (California, Oregon, and Washington). Sites identified pregnant women aged 18 through 50 years whose pregnancies overlapped with local influenza seasons from 2010 through 2016. Administrative data were used to identify hospitalizations with acute respiratory or febrile illness (ARFI) and clinician-ordered real-time reverse transcription polymerase chain reaction (rRT-PCR) testing for influenza viruses. Overall IVE was estimated using the test-negative design and adjusting for site, season, season timing, and high-risk medical conditions.
Results
Among 19450 hospitalizations with an ARFI discharge diagnosis (across 25 site-specific study seasons), only 1030 (6%) of the pregnant women were tested for influenza viruses by rRT-PCR. Approximately half of these women had pneumonia or influenza discharge diagnoses (54%). Influenza A or B virus infections were detected in 598/1030 (58%) of the ARFI hospitalizations with influenza testing. Across sites and seasons, 13% of rRT-PCR-confirmed influenza-positive pregnant women were vaccinated compared with 22% of influenza-negative pregnant women; the adjusted overall IVE was 40% (95% confidence interval = 12%–59%) against influenza-associated hospitalization during pregnancy.
Conclusion
Between 2010 and 2016, influenza vaccines offered moderate protection against laboratory-confirmed influenza-associated hospitalizations during pregnancy, which may further inform the benefits of maternal influenza vaccination programs.
In this retrospective study of hospitals in Australia, Canada, Israel, and the United States from 2010 to 2016, influenza vaccines were 40% effective in preventing laboratory-confirmed influenza-associated hospitalizations during pregnancy.
Journal Article