Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
107
result(s) for
"Borenstein, Elhanan"
Sort by:
Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules
by
Levy, Roie
,
Borenstein, Elhanan
in
Biological competition
,
Biological Sciences
,
Biological taxonomies
2013
The human microbiome plays a key role in human health and is associated with numerous diseases. Metagenomic-based studies are now generating valuable information about the composition of the microbiome in health and in disease, demonstrating nonneutral assembly processes and complex co-occurrence patterns. However, the underlying ecological forces that structure the microbiome are still unclear. Specifically, compositional studies alone with no information about mechanisms of interaction, potential competition, or syntrophy, cannot clearly distinguish habitat-filtering and species assortment assembly processes. To address this challenge, we introduce a computational framework, integrating metagenomic-based compositional data with genome-scale metabolic modeling of species interaction. We use in silico metabolic network models to predict levels of competition and complementarity among 154 microbiome species and compare predicted interaction measures to species co-occurrence. Applying this approach to two large-scale datasets describing the composition of the gut microbiome, we find that species tend to co-occur across individuals more frequently with species with which they strongly compete, suggesting that microbiome assembly is dominated by habitat filtering. Moreover, species' partners and excluders exhibit distinct metabolic interaction levels. Importantly, we show that these trends cannot be explained by phylogeny alone and hold across multiple taxonomic levels. Interestingly, controlling for host health does not change the observed patterns, indicating that the axes along which species are filtered are not fully defined by macroecological host states. The approach presented here lays the foundation for a reverse-ecology framework for addressing key questions concerning the assembly of host-associated communities and for informing clinical efforts to manipulate the microbiome.
Journal Article
Multi-omic integration of microbiome data for identifying disease-associated modules
by
Shiryan, Itamar
,
Muller, Efrat
,
Borenstein, Elhanan
in
631/114/2401
,
631/326/2565/2134
,
631/326/2565/2142
2024
Multi-omic studies of the human gut microbiome are crucial for understanding its role in disease across multiple functional layers. Nevertheless, integrating and analyzing such complex datasets poses significant challenges. Most notably, current analysis methods often yield extensive lists of disease-associated features (e.g., species, pathways, or metabolites), without capturing the multi-layered structure of the data. Here, we address this challenge by introducing “MintTea”, an intermediate integration-based approach combining canonical correlation analysis extensions, consensus analysis, and an evaluation protocol. MintTea identifies “disease-associated multi-omic modules”, comprising features from multiple omics that shift in concord and that collectively associate with the disease. Applied to diverse cohorts, MintTea captures modules with high predictive power, significant cross-omic correlations, and alignment with known microbiome-disease associations. For example, analyzing samples from a metabolic syndrome study, MintTea identifies a module with serum glutamate- and TCA cycle-related metabolites, along with bacterial species linked to insulin resistance. In another dataset, MintTea identifies a module associated with late-stage colorectal cancer, including
Peptostreptococcus
and
Gemella
species and fecal amino acids, in line with these species’ metabolic activity and their coordinated gradual increase with cancer development. This work demonstrates the potential of advanced integration methods in generating systems-level, multifaceted hypotheses underlying microbiome-disease interactions.
Here, Muller et al. introduce MintTea, a method for analyzing multi-omic microbiome data and identifying disease-associated modules comprising mixed sets of features that collectively shift in disease, offering insights into microbiome-disease interactions.
Journal Article
A data-driven approach for predicting the impact of drugs on the human microbiome
2023
Many medications can negatively impact the bacteria residing in our gut, depleting beneficial species, and causing adverse effects. To guide personalized pharmaceutical treatment, a comprehensive understanding of the impact of various drugs on the gut microbiome is needed, yet, to date, experimentally challenging to obtain. Towards this end, we develop a data-driven approach, integrating information about the chemical properties of each drug and the genomic content of each microbe, to systematically predict drug-microbiome interactions. We show that this framework successfully predicts outcomes of in-vitro pairwise drug-microbe experiments, as well as drug-induced microbiome dysbiosis in both animal models and clinical trials. Applying this methodology, we systematically map a large array of interactions between pharmaceuticals and human gut bacteria and demonstrate that medications’ anti-microbial properties are tightly linked to their adverse effects. This computational framework has the potential to unlock the development of personalized medicine and microbiome-based therapeutic approaches, improving outcomes and minimizing side effects.
Drugs can impact the gut microbiome. Here, Algavi and Borenstein developed a machine-learning framework that successfully predicts the impact of thousands of drugs on hundreds of gut microbes, explaining drug-induced dysbiosis and side effects.
Journal Article
Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease
by
Turnbaugh, Peter J
,
Greenblum, Sharon
,
Borenstein, Elhanan
in
Abundance
,
Adaptations
,
bioinformatics
2012
The human microbiome plays a key role in a wide range of host-related processes and has a profound effect on human health. Comparative analyses of the human microbiome have revealed substantial variation in species and gene composition associated with a variety of disease states but may fall short of providing a comprehensive understanding of the impact of this variation on the community and on the host. Here, we introduce a metagenomic systems biology computational framework, integrating metagenomic data with an in silico systems-level analysis of metabolic networks. Focusing on the gut microbiome, we analyze fecal metagenomic data from 124 unrelated individuals, as well as six monozygotic twin pairs and their mothers, and generate community-level metabolic networks of the microbiome. Placing variations in gene abundance in the context of these networks, we identify both gene-level and network-level topological differences associated with obesity and inflammatory bowel disease (IBD). We show that genes associated with either of these host states tend to be located at the periphery of the metabolic network and are enriched for topologically derived metabolic \"inputs.\" These findings may indicate that lean and obese microbiomes differ primarily in their interface with the host and in the way they interact with host metabolism. We further demonstrate that obese microbiomes are less modular, a hallmark of adaptation to low-diversity environments. We additionally link these topological variations to community species composition. The system-level approach presented here lays the foundation for a unique framework for studying the human microbiome, its organization, and its impact on human health.
Journal Article
The microbiome’s fiber degradation profile and its relationship with the host diet
2022
Background
The relationship between the gut microbiome and diet has been the focus of numerous recent studies. Such studies aim to characterize the impact of diet on the composition of the microbiome, as well as the microbiome’s ability to utilize various compounds in the diet and produce metabolites that may be beneficial for the host. Consumption of dietary fibers (DFs)—polysaccharides that cannot be broken down by the host’s endogenous enzymes and are degraded primarily by members of the microbiome—is known to have a profound effect on the microbiome. Yet, a comprehensive characterization of microbiome compositional and functional shifts in response to the consumption of specific DFs is still lacking.
Results
Here, we introduce a computational framework, coupling metagenomic sequencing with careful annotation of polysaccharide degrading enzymes and DF structures, for inferring the metabolic ability of a given microbiome sample to utilize a broad catalog of DFs. We demonstrate that the
inferred fiber degradation profile
(IFDP) generated by our framework accurately reflects the dietary habits of various hosts across four independent datasets. We further demonstrate that IFDPs are more tightly linked to the host diet than commonly used taxonomic and functional microbiome-based profiles. Finally, applying our framework to a set of ~700 metagenomes that represents large human population cohorts from 9 different countries, we highlight intriguing global patterns linking DF consumption habits with microbiome capacities.
Conclusions
Combined, our findings serve as a proof-of-concept for the use of DF-specific analysis for providing important complementary information for better understanding the relationship between dietary habits and the gut microbiome.
Journal Article
Interpolation of microbiome composition in longitudinal data sets
2024
Since missing samples are common in longitudinal microbiome dataset due to inconsistent collection practices, it is important to evaluate and benchmark different interpolation methods for predicting microbiome composition in such samples and facilitate downstream analysis. Our study rigorously evaluated several such methods and identified the K-nearest neighbors approach as particularly effective for this task. The study also notes significant variability in interpolation accuracy among individuals, influenced by factors such as age, sample size, and sampling frequency. Furthermore, we developed a predictive model for estimating interpolation accuracy at a specific time point, enhancing the reliability of such analyses in future studies. Combined, our study, thus, provides critical insights and tools that enhance the accuracy and reliability of data interpolation methods in the growing field of longitudinal microbiome research.
Journal Article
Taxa-function robustness in microbial communities
by
Eng, Alexander
,
Borenstein, Elhanan
in
Analysis
,
Bacteria - classification
,
Bacteria - genetics
2018
Background
The species composition of a microbial community is rarely fixed and often experiences fluctuations of varying degrees and at varying frequencies. These perturbations to a community’s taxonomic profile naturally also alter the community’s functional profile–the aggregate set of genes encoded by community members–ultimately altering the community’s overall functional capacities. The magnitude of such functional changes and the specific shift that will occur in each function, however, are strongly dependent on how genes are distributed across community members’ genomes. This gene distribution, in turn, is determined by the taxonomic composition of the community and would markedly differ, for example, between communities composed of species with similar genomic content vs. communities composed of species whose genomes encode relatively distinct gene sets. Combined, these observations suggest that community functional robustness to taxonomic perturbations could vary widely across communities with different compositions, yet, to date, a systematic study of the inherent link between community composition and robustness is lacking.
Results
In this study, we examined how a community’s taxonomic composition influences the robustness of that community’s functional profile to taxonomic perturbation (here termed
taxa-function robustness
) across a wide array of environments. Using a novel simulation-based computational model to quantify this taxa-function robustness in host-associated and non-host-associated communities, we find notable differences in robustness between communities inhabiting different body sites, including significantly higher robustness in gut communities compared to vaginal communities that cannot be attributed solely to differences in species richness. We additionally find between-site differences in the robustness of specific functions, some of which are potentially related to site-specific environmental conditions. These taxa-function robustness differences are most strongly associated with differences in overall functional redundancy, though other aspects of gene distribution also influence taxa-function robustness in certain body environments, and are sufficient to cluster communities by environment. Further analysis revealed a correspondence between our robustness estimates and taxonomic and functional shifts observed across human-associated communities.
Conclusions
Our analysis approach revealed intriguing taxa-function robustness variation across environments and identified features of community and gene distribution that impact robustness. This approach could be further applied for estimating taxa-function robustness in novel communities and for informing the design of synthetic communities with specific robustness requirements.
Journal Article
Relative dispersion ratios following fecal microbiota transplant elucidate principles governing microbial migration dynamics
2024
Microorganisms frequently migrate from one ecosystem to another. Yet, despite the potential importance of this process in modulating the environment and the microbial ecosystem, our understanding of the fundamental forces that govern microbial dispersion is still lacking. Moreover, while theoretical models and in-vitro experiments have highlighted the contribution of species interactions to community assembly, identifying such interactions in vivo, specifically in communities as complex as the human gut, remains challenging. To address this gap, here we introduce a robust and rigorous computational framework, termed
Relative Dispersion Ratio
(
RDR
) analysis, and leverage data from well-characterized fecal microbiota transplant trials, to rigorously pinpoint dependencies between taxa during the colonization of human gastrointestinal tract. Our analysis identifies numerous pairwise dependencies between co-colonizing microbes during migration between gastrointestinal environments. We further demonstrate that identified dependencies agree with previously reported findings from in-vitro experiments and population-wide distribution patterns. Finally, we explore metabolic dependencies between these taxa and characterize the functional properties that facilitate effective dispersion. Collectively, our findings provide insights into the principles and determinants of community dynamics following ecological translocation, informing potential opportunities for precise community design.
Microbial migration profoundly impacts ecosystems. Here, the authors introduce a statistical approach to explore microbial dispersion following fecal microbiota transplant, uncovering dependencies between colonizing taxa, with insights into community dynamics.
Journal Article
Comparative Analysis of Functional Metagenomic Annotation and the Mappability of Short Reads
2014
To assess the functional capacities of microbial communities, including those inhabiting the human body, shotgun metagenomic reads are often aligned to a database of known genes. Such homology-based annotation practices critically rely on the assumption that short reads can map to orthologous genes of similar function. This assumption, however, and the various factors that impact short read annotation, have not been systematically evaluated. To address this challenge, we generated an extremely large database of simulated reads (totaling 15.9 Gb), spanning over 500,000 microbial genes and 170 curated genomes and including, for many genomes, every possible read of a given length. We annotated each read using common metagenomic protocols, fully characterizing the effect of read length, sequencing error, phylogeny, database coverage, and mapping parameters. We additionally rigorously quantified gene-, genome-, and protocol-specific annotation biases. Overall, our findings provide a first comprehensive evaluation of the capabilities and limitations of functional metagenomic annotation, providing crucial goal-specific best-practice guidelines to inform future metagenomic research.
Journal Article
A meta-analysis study of the robustness and universality of gut microbiome-metabolome associations
by
Algavi, Yadid M.
,
Muller, Efrat
,
Borenstein, Elhanan
in
Bile Acids and Salts
,
Bioinformatics
,
Biomedical and Life Sciences
2021
Background
Microbiome-metabolome studies of the human gut have been gaining popularity in recent years, mostly due to accumulating evidence of the interplay between gut microbes, metabolites, and host health. Statistical and machine learning-based methods have been widely applied to analyze such paired microbiome-metabolome data, in the hope of identifying metabolites that are governed by the composition of the microbiome. Such metabolites can be likely modulated by microbiome-based interventions, offering a route for promoting gut metabolic health. Yet, to date, it remains unclear whether findings of microbially associated metabolites in any single study carry over to other studies or cohorts, and how robust and universal are microbiome-metabolites links.
Results
In this study, we addressed this challenge by performing a comprehensive meta-analysis to identify human gut metabolites that can be predicted based on the composition of the gut microbiome across multiple studies. We term such metabolites “robustly well-predicted”. To this end, we processed data from 1733 samples from 10 independent human gut microbiome-metabolome studies, focusing initially on healthy subjects, and implemented a machine learning pipeline to predict metabolite levels in each dataset based on the composition of the microbiome. Comparing the predictability of each metabolite across datasets, we found 97 robustly well-predicted metabolites. These include metabolites involved in important microbial pathways such as bile acid transformations and polyamines metabolism. Importantly, however, other metabolites exhibited large variation in predictability across datasets, suggesting a cohort- or study-specific relationship between the microbiome and the metabolite. Comparing taxonomic contributors to different models, we found that some robustly well-predicted metabolites were predicted by markedly different sets of taxa across datasets, suggesting that some microbially associated metabolites may be governed by different members of the microbiome in different cohorts. We finally examined whether models trained on a control group of a given study successfully predicted the metabolite’s level in the disease group of the same study, identifying several metabolites where the model was not transferable, indicating a shift in microbial metabolism in disease-associated dysbiosis.
Conclusions
Combined, our findings provide a better understanding of the link between the microbiome and metabolites and allow researchers to put identified microbially associated metabolites within the context of other studies.
9FDD9YR_-AdGzQQ9nr1KAw
Video abstract
Journal Article