Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
122
result(s) for
"Borghi, Monica"
Sort by:
Floral Metabolism of Sugars and Amino Acids
by
Fernie, Alisdair R.
,
Borghi, Monica
in
Amino Acids - metabolism
,
Animals
,
Flowers - metabolism
2017
New discoveries open up future directions in the study of the primary metabolism of flowers.
Journal Article
Flowers and climate change
by
Fernie, Alisdair R.
,
de Souza, Leonardo Perez
,
Borghi, Monica
in
abiotic stress
,
autogamy
,
biochemical pathways
2019
Adverse climatic conditions at the time of flowering severely hinder crop yields and threaten the interactions between plants and their pollinators. These features depend on a common trait: the metabolism of flowers. In this Viewpoint article, we aim to provide insight into the metabolic changes that occur in flowers in response to changes in climate and emphasize that these changes severely impact the fitness of autogamous and allogamous species, plant–pollinator interactions, and overall ecosystem health. We review the biochemical processes that lead to failure of gamete development and to alterations of color, scent and nectar secretion. Then, making use of open access expression data, we examine the expression of genes that may drive these changes in response to heat and drought. Finally, we present measurements of metabolites from flowers exposed to a heat wave and discuss how the results of this short-term experiment may give rise to misleading conclusions regarding the positive effect of heat on flower fitness. We hope this article draws attention to this often-neglected dynamic and its important consequences.
Journal Article
The MYB36 transcription factor orchestrates Casparian strip formation
by
Wang, Peng
,
Geldner, Niko
,
Kalmbach, Lothar
in
Alleles
,
Arabidopsis - genetics
,
Arabidopsis - metabolism
2015
The endodermis in roots acts as a selectivity filter for nutrient and water transport essential for growth and development. This selectivity is enabled by the formation of lignin-based Casparian strips. Casparian strip formation is initiated by the localization of the Casparian strip domain proteins (CASPs) in the plasma membrane, at the site where the Casparian strip will form. Localized CASPs recruit Peroxidase 64 (PER64), a Respiratory Burst Oxidase Homolog F, and Enhanced Suberin 1 (ESB1), a dirigent-like protein, to assemble the lignin polymerization machinery. However, the factors that control both expression of the genes encoding this biosynthetic machinery and its localization to the Casparian strip formation site remain unknown. Here, we identify the transcription factor, MYB36, essential for Casparian strip formation. MYB36 directly and positively regulates the expression of the Casparian strip genesCASP1, PER64,andESB1. Casparian strips are absent in plants lacking a functionalMYB36and are replaced by ectopic lignin-like material in the corners of endodermal cells. The barrier function of Casparian strips in these plants is also disrupted. Significantly, ectopic expression ofMYB36in the cortex is sufficient to reprogram these cells to start expressingCASP1–GFP, correctly localize the CASP1–GFP protein to form a Casparian strip domain, and deposit a Casparian strip-like structure in the cellwall at this location. These results demonstrate that MYB36 is controlling expression of the machinery required to locally polymerize lignin in a fine band in the cell wall for the formation of the Casparian strip.
Journal Article
Circulation and Seasonality of Respiratory Viruses in Hospitalized Patients during Five Consecutive Years (2019–2023) in Perugia, Italy
2024
The emergence of SARS-CoV-2 and the non-pharmacological interventions adopted to counter its spread appear to have led to changes in the normal circulation and seasonality of respiratory viruses. Our study aims to investigate changes related to the circulation of respiratory viruses, not SARS-CoV-2, among hospitalized patients in Perugia, Central Italy, between 2019 and 2023. The samples were collected from individuals who went to the emergency room (ER) or were hospitalized and analyzed using a molecular multiplex test. The results underline that non-pharmaceutical interventions altered the typical seasonal circulation patterns of different respiratory viruses. Those mostly affected were enveloped viruses like influenza viruses that disappeared in 2021; the least impact was recorded for Rhinovirus, which was detected during the pandemic period, maintaining the same seasonality observed in the pre-pandemic period although with a reduction in the number of positive samples. Our data underline the importance of the continuous monitoring of these viruses, especially to understand the timing with which prevention measures, not only non-pharmacological interventions but also the equipment of vaccine doses and monoclonal antibodies, should be adopted to reduce their circulation, particularly in the population at risk of developing severe forms of lower respiratory tract infection.
Journal Article
IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis
2016
Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurrs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF.
IL-1-mediated inflammation contributes to the pathogenesis of cystic fibrosis. Here the authors show that this is largely due to NLRP3 activation, whereas NLRP4 induces IL-1Ra, limiting the overall inflammasome activity and providing a therapeutic angle to ameliorate the disease.
Journal Article
A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis
2017
T helper 9 (Th9) cells contribute to lung inflammation and allergy as sources of interleukin-9 (IL-9). However, the mechanisms by which IL-9/Th9 mediate immunopathology in the lung are unknown. Here we report an IL-9-driven positive feedback loop that reinforces allergic inflammation. We show that IL-9 increases IL-2 production by mast cells, which leads to expansion of CD25
+
type 2 innate lymphoid cells (ILC2) and subsequent activation of Th9 cells. Blocking IL-9 or inhibiting CD117 (c-Kit) signalling counteracts the pathogenic effect of the described IL-9-mast cell-IL-2 signalling axis. Overproduction of IL-9 is observed in expectorates from cystic fibrosis (CF) patients, and a sex-specific variant of IL-9 is predictive of allergic reactions in female patients. Our results suggest that blocking IL-9 may be a therapeutic strategy to ameliorate inflammation associated with microbial colonization in the lung, and offers a plausible explanation for gender differences in clinical outcomes of patients with CF.
In patients with cystic fibrosis, IL-9 signalling is increased. The authors describe an inflammatory loop in which IL-9 produced by Th9 cells drives mast cells to produce IL-2, resulting in ILC2 cell activation, and show inhibition of this loop with blocking antibodies to IL-9 in a mouse model of pulmonary infection.
Journal Article
The Leaf Ionome as a Multivariable System to Detect a Plant's Physiological Status
by
Salt, David E.
,
Vitek, Olga
,
Borghi, Monica
in
Arabidopsis - drug effects
,
Arabidopsis - metabolism
,
Arabidopsis Proteins
2008
The contention that quantitative profiles of biomolecules contain information about the physiological state of the organism has motivated a variety of high-throughput molecular profiling experiments. However, unbiased discovery and validation of biomolecular signatures from these experiments remains a challenge. Here we show that the Arabidopsis thaliana (Arabidopsis) leaf ionome, or elemental composition, contains such signatures, and we establish statistical models that connect these multivariable signatures to defined physiological responses, such as iron (Fe) and phosphorus (P) homeostasis. Iron is essential for plant growth and development, but potentially toxic at elevated levels. Because of this, shoot Fe concentrations are tightly regulated and show little variation over a range of Fe concentrations in the environment, making them a poor probe of a plant's Fe status. By evaluating the shoot ionome in plants grown under different Fe nutritional conditions, we have established a multivariable ionomic signature for the Fe response status of Arabidopsis. This signature has been validated against known Fe-response proteins and allows the high-throughput detection of the Fe status of plants with a false negative/positive rate of 18%/16%. A \"metascreen\" of previously collected ionomic data from 880 Arabidopsis mutants and natural accessions for this Fe response signature successfully identified the known Fe mutants frd1 and frd3. A similar approach has also been taken to identify and use a shoot ionomic signature associated with P homeostasis. This study establishes that multivariable ionomic signatures of physiological states associated with mineral nutrient homeostasis do exist in Arabidopsis and are in principle robust enough to detect specific physiological responses to environmental or genetic perturbations.
Journal Article
Targeting the Aryl Hydrocarbon Receptor With Indole-3-Aldehyde Protects From Vulvovaginal Candidiasis via the IL-22-IL-18 Cross-Talk
2019
Vulvovaginal candidiasis (VVC) is a common mucosal infection caused by
spp., most frequently by
, which may become recurrent and severely impacting the quality of life of susceptible women. Although it is increasingly being recognized that mucosal damage is mediated by an exaggerated inflammatory response, current therapeutic approaches are only based on antifungals that may relieve the symptomatology, but fail to definitely prevent recurrences. The unrestrained activation of the NLRP3 inflammasome with continuous production of IL-1β and recruitment of neutrophils is recognized as a pathogenic factor in VVC. We have previously shown that IL-22 is required to dampen pathogenic inflammasome activation in VVC via the NLRC4/IL-1Ra axis. However, IL-22 also regulates IL-18, a product of the inflammasome activity that regulates IL-22 expression. Here we describe a cross-regulatory circuit between IL-18 and IL-22 in murine VVC that is therapeutically druggable. We found that IL-18 production was dependent on IL-22 and NLRC4, and that IL-18, in turn, contributes to IL-22 activity. Like in IL-22 deficiency, IL-18 deficiency was associated with an increased susceptibility to VVC and unbalanced Th17/Treg response, suggesting that IL-18 can regulate both the innate and the adaptive responses to the fungus. Administration of the microbial metabolite indole-3-aldehyde, known to stimulate the production of IL-22 via the aryl hydrocarbon receptor (AhR), promoted IL-18 expression and protection against
infection. Should low levels of IL-18 be demonstrated in the vaginal fluids of women with recurrent VVC, targeting the AhR/IL-22/IL-18 pathway could be exploited for future therapeutic approaches in VVC. This study suggests that a deeper understanding of the mechanisms regulating inflammasome activity may lead to the identification of novel targets for intervention in VVC.
Journal Article
High-Throughput RNA Sequencing of Pseudomonas-Infected Arabidopsis Reveals Hidden Transcriptome Complexity and Novel Splice Variants
by
Gassmann, Walter
,
Veronese, Paola
,
Babaoglu, Ahmet Can
in
Alternative splicing
,
Alternative Splicing - genetics
,
Analysis
2013
We report the results of a genome-wide analysis of transcription in Arabidopsis thaliana after treatment with Pseudomonas syringae pathovar tomato. Our time course RNA-Seq experiment uses over 500 million read pairs to provide a detailed characterization of the response to infection in both susceptible and resistant hosts. The set of observed differentially expressed genes is consistent with previous studies, confirming and extending existing findings about genes likely to play an important role in the defense response to Pseudomonas syringae. The high coverage of the Arabidopsis transcriptome resulted in the discovery of a surprisingly large number of alternative splicing (AS) events--more than 44% of multi-exon genes showed evidence for novel AS in at least one of the probed conditions. This demonstrates that the Arabidopsis transcriptome annotation is still highly incomplete, and that AS events are more abundant than expected. To further refine our predictions, we identified genes with statistically significant changes in the ratios of alternative isoforms between treatments. This set includes several genes previously known to be alternatively spliced or expressed during the defense response, and it may serve as a pool of candidate genes for regulated alternative splicing with possible biological relevance for the defense response against invasive pathogens.
Journal Article
A microbially produced AhR ligand promotes a Tph1-driven tolerogenic program in multiple sclerosis
2024
Multiple sclerosis is a debilitating autoimmune disease, characterized by chronic inflammation of the central nervous system. While the significance of the gut microbiome on multiple sclerosis pathogenesis is established, the underlining mechanisms are unknown. We found that serum levels of the microbial postbiotic tryptophan metabolite indole-3-carboxaldehyde (3-IAld) inversely correlated with disease duration in multiple sclerosis patients. Much like the host-derived tryptophan derivative
l
-Kynurenine, 3-IAld would bind and activate the Aryl hydrocarbon Receptor (AhR), which, in turn, controls endogenous tryptophan catabolic pathways. As a result, in peripheral lymph nodes, microbial 3-IAld, affected mast-cell tryptophan metabolism, forcing mast cells to produce serotonin via Tph1. We thus propose a protective role for AhR–mast-cell activation driven by the microbiome, whereby natural metabolites or postbiotics will have a physiological role in immune homeostasis and may act as therapeutic targets in autoimmune diseases.
Journal Article