Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
343 result(s) for "Bork, Peer"
Sort by:
Diversity within species: interpreting strains in microbiomes
Studying within-species variation has traditionally been limited to culturable bacterial isolates and low-resolution microbial community fingerprinting. Metagenomic sequencing and technical advances have enabled culture-free, high-resolution strain and subspecies analyses at high throughput and in complex environments. This holds great scientific promise but has also led to an overwhelming number of methods and terms to describe infraspecific variation. This Review aims to clarify these advances by focusing on the diversity within bacterial and archaeal species in the context of microbiomics. We cover foundational microevolutionary concepts relevant to population genetics and summarize how within-species variation can be studied and stratified directly within microbial communities with a focus on metagenomics. Finally, we describe how common applications of within-species variation can be achieved using metagenomic data. We aim to guide the selection of appropriate terms and analytical approaches to facilitate researchers in benefiting from the increasing availability of large, high-resolution microbiome genetic sequencing data.Large-scale metagenomic analyses are vastly increasing the rate of discovery of variation within species but they are also leading to scientific and semantic challenges. Bork and colleagues highlight the advances and challenges that are resulting from the use of metagenomic data to study within-species diversity.
Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver failure
The human gut microbiome has emerged as a major player in human health and disease. The liver, as the first organ to encounter microbial products that cross the gut epithelial barrier, is affected by the gut microbiome in many ways. Thus, the gut microbiome might play a major part in the development of liver diseases. The common end stage of liver disease is decompensated cirrhosis and the further development towards acute-on-chronic liver failure (ACLF). These conditions have high short-term mortality. There is evidence that translocation of components of the gut microbiota, facilitated by different pathogenic mechanisms such as increased gut epithelial permeability and portal hypertension, is an important driver of decompensation by induction of systemic inflammation, and thereby also ACLF. Elucidating the role of the gut microbiome in the aetiology of decompensated cirrhosis and ACLF deserves further investigation and improvement; and might be the basis for development of diagnostic and therapeutic strategies. In this Review, we focus on the possible pathogenic, diagnostic and therapeutic role of the gut microbiome in decompensation of cirrhosis and progression to ACLF. The common end stage of liver disease is decompensated cirrhosis and the further development towards acute-on-chronic liver failure. In this Review, the authors discuss the possible pathogenic, diagnostic and therapeutic role of the gut microbiota in decompensation of cirrhosis and progression to acute-on-chronic liver failure. Key points The gut microbiome is altered during development of liver cirrhosis, and these changes are associated with decompensation and development of acute-on-chronic liver failure (ACLF). Progression of liver cirrhosis towards decompensation and ACLF is mainly driven by the extent of systemic inflammation and associated with high short-term mortality. The gut microbiota can contribute to systemic inflammation and, thereby, to progression of cirrhosis towards decompensation and ACLF, directly via translocation or indirectly via their metabolites. Gut microbiota members or pathobionts might be helpful biomarkers to predict the presence and development of decompensation and ACLF, but the signatures are not consistent and more research is needed. Gut microbiome targeted therapies are promising strategies to improve the outcome of decompensated cirrhosis and ACLF, but better stratification for the existing drugs and novel, more effective strategies are needed.
eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale
Abstract Even though automated functional annotation of genes represents a fundamental step in most genomic and metagenomic workflows, it remains challenging at large scales. Here, we describe a major upgrade to eggNOG-mapper, a tool for functional annotation based on precomputed orthology assignments, now optimized for vast (meta)genomic data sets. Improvements in version 2 include a full update of both the genomes and functional databases to those from eggNOG v5, as well as several efficiency enhancements and new features. Most notably, eggNOG-mapper v2 now allows for: 1) de novo gene prediction from raw contigs, 2) built-in pairwise orthology prediction, 3) fast protein domain discovery, and 4) automated GFF decoration. eggNOG-mapper v2 is available as a standalone tool or as an online service at http://eggnog-mapper.embl.de.
Tara Oceans: towards global ocean ecosystems biology
A planetary-scale understanding of the ocean ecosystem, particularly in light of climate change, is crucial. Here, we review the work of Tara Oceans, an international, multidisciplinary project to assess the complexity of ocean life across comprehensive taxonomic and spatial scales. Using a modified sailing boat, the team sampled plankton at 210 globally distributed sites at depths down to 1,000 m. We describe publicly available resources of molecular, morphological and environmental data, and discuss how an ecosystems biology approach has expanded our understanding of plankton diversity and ecology in the ocean as a planetary, interconnected ecosystem. These efforts illustrate how global-scale concepts and data can help to integrate biological complexity into models and serve as a baseline for assessing ecosystem changes and the future habitability of our planet in the Anthropocene epoch.The schooner Tara sailed 140,000 km across the global oceans to sample diverse marine ecosystems and plankton communities. In the Review, members of the Tara Oceans project highlight how resulting data can be used for an integrated understanding of ocean biology.
Microbial abundance, activity and population genomic profiling with mOTUs2
Metagenomic sequencing has greatly improved our ability to profile the composition of environmental and host-associated microbial communities. However, the dependency of most methods on reference genomes, which are currently unavailable for a substantial fraction of microbial species, introduces estimation biases. We present an updated and functionally extended tool based on universal (i.e., reference-independent), phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of >7700 microbial species. As more than 30% of them could not previously be quantified at this taxonomic resolution, relative abundance estimates based on mOTUs are more accurate compared to other methods. As a new feature, we show that mOTUs, which are based on essential housekeeping genes, are demonstrably well-suited for quantification of basal transcriptional activity of community members. Furthermore, single nucleotide variation profiles estimated using mOTUs reflect those from whole genomes, which allows for comparing microbial strain populations (e.g., across different human body sites). Metagenomic analysis based on universal phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) is a useful strategy, especially for microbial species without reference genomes. Here, the authors develop mOTUs2, an updated and functionally extended profiling tool for microbial abundance, activity and population profiling.
Visualizing translation dynamics at atomic detail inside a bacterial cell
Translation is the fundamental process of protein synthesis and is catalysed by the ribosome in all living cells 1 . Here we use advances in cryo-electron tomography and sub-tomogram analysis 2 , 3 to visualize the structural dynamics of translation inside the bacterium Mycoplasma pneumoniae . To interpret the functional states in detail, we first obtain a high-resolution in-cell average map of all translating ribosomes and build an atomic model for the M.   pneumoniae ribosome that reveals distinct extensions of ribosomal proteins. Classification then resolves 13 ribosome states that differ in their conformation and composition. These recapitulate major states that were previously resolved in vitro, and reflect intermediates during active translation. On the basis of these states, we animate translation elongation inside native cells and show how antibiotics reshape the cellular translation landscapes. During translation elongation, ribosomes often assemble in defined three-dimensional arrangements to form polysomes 4 . By mapping the intracellular organization of translating ribosomes, we show that their association into polysomes involves a local coordination mechanism that is mediated by the ribosomal protein L9. We propose that an extended conformation of L9 within polysomes mitigates collisions to facilitate translation fidelity. Our work thus demonstrates the feasibility of visualizing molecular processes at atomic detail inside cells. Cryo-electron tomography is used to reveal the structural dynamics and functional diversity of translating ribosomes in Mycoplasma pneumoniae , providing insight into the translation elongation cycle inside cells and how it is reshaped by antibiotics.
Extensive impact of non-antibiotic drugs on human gut bacteria
A few commonly used non-antibiotic drugs have recently been associated with changes in gut microbiome composition, but the extent of this phenomenon is unknown. Here, we screened more than 1,000 marketed drugs against 40 representative gut bacterial strains, and found that 24% of the drugs with human targets, including members of all therapeutic classes, inhibited the growth of at least one strain in vitro . Particular classes, such as the chemically diverse antipsychotics, were overrepresented in this group. The effects of human-targeted drugs on gut bacteria are reflected on their antibiotic-like side effects in humans and are concordant with existing human cohort studies. Susceptibility to antibiotics and human-targeted drugs correlates across bacterial species, suggesting common resistance mechanisms, which we verified for some drugs. The potential risk of non-antibiotics promoting antibiotic resistance warrants further exploration. Our results provide a resource for future research on drug–microbiome interactions, opening new paths for side effect control and drug repurposing, and broadening our view of antibiotic resistance. A screen of more than 1,000 drugs shows that about a quarter of the non-antibiotic drugs inhibit the growth of at least one commensal bacterial strain in vitro . Non-antibiotics with antibiotic effects Some non-antibiotic drugs have been associated with changes in gut microbiome composition, but the extent of this phenomenon is unknown. Athanasios Typas and colleagues screened more than 1,000 marketed drugs and observed that a quarter of them inhibited the growth of at least one bacterial strain in vitro . Scrutiny of previous human cohort studies showed that human-targeted drugs with anticommensal activity have antibiotic-like side effects in humans. The new data provide a resource for future drug-therapy research.
Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox
The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic studies (10,803 samples). When naively transferred across studies, ML models lost accuracy and disease specificity, which could however be resolved by a novel training set augmentation strategy. This reveals some biomarkers to be disease-specific, with others shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de .
Extensive transmission of microbes along the gastrointestinal tract
The gastrointestinal tract is abundantly colonized by microbes, yet the translocation of oral species to the intestine is considered a rare aberrant event, and a hallmark of disease. By studying salivary and fecal microbial strain populations of 310 species in 470 individuals from five countries, we found that transmission to, and subsequent colonization of, the large intestine by oral microbes is common and extensive among healthy individuals. We found evidence for a vast majority of oral species to be transferable, with increased levels of transmission in colorectal cancer and rheumatoid arthritis patients and, more generally, for species described as opportunistic pathogens. This establishes the oral cavity as an endogenous reservoir for gut microbial strains, and oral-fecal transmission as an important process that shapes the gastrointestinal microbiome in health and disease. Trillions of bacteria and other microbes live in the human body. The mouth and the gut in particular, are microbial hot spots at either end of the digestive tract. Every day, humans swallow around 1.5 liters of saliva, along with millions of oral microbes. Scientists believe that more than 99% of these microbes die as they pass through the acidic environment of the stomach and later the small intestine, which act as a barrier between the bacteria of the mouth and gut. Failure of this barrier can lead to overgrowth of oral microbes in the gut. This may contribute to diseases like bowel cancer, rheumatoid arthritis and inflammatory bowel diseases. But even in healthy people, low levels of microbes usually found in the mouth are often found in stool. It is unclear if these microbes cross the barrier or if they are similar microbes that originate in the gut. Now, Schmidt, Hayward et al. show that in healthy people at least one in three oral microbial cells pass through the digestive tract to settle the gut in healthy people. This challenges the notion of a mouth-gut barrier. In the experiments, the genetic material of all the microbes in the saliva and stool of several hundred people from three continents was analyzed. This allowed Schmidt, Hayward et al. to determine whether strains found in the gut originate from the mouth, or are closely related but specialized gut types of the same species. The results also showed that patients with bowel cancer and rheumatoid arthritis had more mouth-to-gut microbial transmission than their healthy counterparts. The experiments suggest that the mouth is a microbial reservoir that constantly replenishes the gut flora. Some of the gut-traveling oral bacteria trigger inflammation when they grow in other parts of the body like the lining of the heart. This, along with the discovery that patients with certain diseases have more oral bacteria in the gut, may suggest that the transmission of these microbes contributes to disease. The experiments also indicate that finding ways to influence oral bacteria might affect the ones in the gut. More studies are needed to understand how mouth microbes survive the trip to the gut and are able to thrive in this competitive environment, and what role they play in health and disease.
Metabolic dependencies drive species co-occurrence in diverse microbial communities
Microbial communities populate most environments on earth and play a critical role in ecology and human health. Their composition is thought to be largely shaped by interspecies competition for the available resources, but cooperative interactions, such as metabolite exchanges, have also been implicated in community assembly. The prevalence of metabolic interactions in microbial communities, however, has remained largely unknown. Here, we systematically survey, by using a genome-scale metabolic modeling approach, the extent of resource competition and metabolic exchanges in over 800 communities. We find that, despite marked resource competition at the level of whole assemblies, microbial communities harbor metabolically interdependent groups that recur across diverse habitats. By enumerating flux-balanced metabolic exchanges in these co-occurring subcommunities we also predict the likely exchanged metabolites, such as amino acids and sugars, that can promote group survival under nutritionally challenging conditions. Our results highlight metabolic dependencies as a major driver of species co-occurrence and hint at cooperative groups as recurring modules of microbial community architecture. Significance Although metabolic interactions have long been implicated in the assembly of microbial communities, their general prevalence has remained largely unknown. In this study, we systematically survey, by using a metabolic modeling approach, the extent of resource competition and metabolic cross-feeding in over 800 microbial communities from diverse habitats. We show that interspecies metabolic exchanges are widespread in natural communities, and that such exchanges can provide group advantage under nutrient-poor conditions. Our results highlight metabolic dependencies as a major driver of species co-occurrence. The presented methodology and mechanistic insights have broad implications for understanding compositional variation in natural communities as well as for facilitating the design of synthetic microbial communities.