Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
242
result(s) for
"Borrego, Francisco"
Sort by:
NK Cell Metabolism and Tumor Microenvironment
2019
Natural Killer (NK) cells are characterized by their potential to kill tumor cells by different means without previous sensitization and have, therefore, become a valuable tool in cancer immunotherapy. However, their efficacy against solid tumors is still poor and further studies are required to improve it. One of the major restrictions for NK cell activity is the immunosuppressive tumor microenvironment (TME). There, tumor and other immune cells create the appropriate conditions for tumor proliferation while, among others, preventing NK cell activation. Furthermore, NK cell metabolism is impaired in the TME, presumably due to nutrient and oxygen deprivation, and the higher concentration of tumor-derived metabolic end products, such as lactate. This metabolic restriction of NK cells limits their effector functions, and it could represent a potential target to focus on to improve the efficacy of NK cell-based therapies against solid tumors. In this review, we discuss the potential effect of TME into NK cell metabolism and its influence in NK cell effector functions.
Journal Article
Cytokine-Induced Memory-Like NK Cells: From the Basics to Clinical Applications
by
Orrantia, Ane
,
Astarloa-Pando, Gabirel
,
Amarilla-Irusta, Ainhoa
in
Acute myeloid leukemia
,
Adoptive transfer
,
AML - acute myeloid leukemia
2022
Natural killer (NK) cells are lymphocytes with a key role in the defense against viral infections and tumor cells. Although NK cells are classified as innate lymphoid cells (ILCs), under certain circumstances they exhibit adaptive and memory-like features. The latter may be achieved, among others, by a brief stimulation with interleukin (IL)-12, IL-15 and IL-18. These cytokine-induced memory-like (CIML) NK cells resemble the trained immunity observed in myeloid cells. CIML NK cells undergo transcriptional, epigenetic and metabolic reprogramming that, along with changes in the expression of cell surface receptors and components of cytotoxic granules, are responsible for their enhanced effector functions after a resting period. In addition, these memory-like NK cells persist for a long time, which make them a good candidate for cancer immunotherapy. Currently, several clinical trials are testing CIML NK cells infusions to treat tumors, mostly hematological malignancies. In relapse/refractory acute myeloid leukemia (AML), the adoptive transfer of CIML NK cells is safe and complete clinical remissions have been observed. In our review, we sought to summarize the current knowledge about the generation and molecular basis of NK cell memory-like responses and the up-to-date results from clinical trials with CIML NK cells.
Journal Article
Metabolic changes of Interleukin-12/15/18-stimulated human NK cells
by
Orrantia, Ane
,
Terrén, Iñigo
,
Vitallé, Joana
in
631/250/127/1213
,
631/250/1619/382
,
631/250/2504/2506
2021
Natural Killer (NK) cells acquire memory-like properties following a brief stimulation with IL-12, IL-15 and IL-18. These IL-12/15/18-preactivated NK cells, also known as cytokine-induced memory-like (CIML) NK cells, have been revealed as a powerful tool in cancer immunotherapy due to their persistence in the host and their increased effector functions. Several studies have shown that NK cells modulate their metabolism in response to cytokine-stimulation and other stimuli, suggesting that there is a link between metabolism and cellular functions. In this paper, we have analyzed metabolic changes associated to IL-12/15/18-stimulation and the relevance of glycolytic pathway for NK cell effector functions. We have found CIML NK cells are able to retain a metabolic profile shifted towards glycolysis seven days after cytokine withdrawal. Furthermore, we found that treatment with 2-DG differently affects distinct NK cell effector functions and is stimuli-dependent. These findings may have implications in the design of NK cell-based cancer immunotherapies.
Journal Article
Turning universal O into rare Bombay type blood
2023
Red blood cell antigens play critical roles in blood transfusion since donor incompatibilities can be lethal. Recipients with the rare total deficiency in H antigen, the O
h
Bombay phenotype, can only be transfused with group O
h
blood to avoid serious transfusion reactions. We discover FucOB from the mucin-degrading bacteria
Akkermansia muciniphila
as an α-1,2-fucosidase able to hydrolyze Type I, Type II, Type III and Type V H antigens to obtain the afucosylated Bombay phenotype in vitro. X-ray crystal structures of FucOB show a three-domain architecture, including a GH95 glycoside hydrolase. The structural data together with site-directed mutagenesis, enzymatic activity and computational methods provide molecular insights into substrate specificity and catalysis. Furthermore, using agglutination tests and flow cytometry-based techniques, we demonstrate the ability of FucOB to convert universal O type into rare Bombay type blood, providing exciting possibilities to facilitate transfusion in recipients/patients with Bombay phenotype.
People with the rare Bombay-type O
h
blood group can only be transfused with O
h
blood. Here, the authors characterize a bacterial α−1,2-fucosidase that can convert universal O type into rare Bombay type blood.
Journal Article
T Cell Activation, Highly Armed Cytotoxic Cells and a Shift in Monocytes CD300 Receptors Expression Is Characteristic of Patients With Severe COVID-19
2021
COVID-19 manifests with a wide diversity of clinical phenotypes characterized by dysfunctional and exaggerated host immune responses. Many results have been described on the status of the immune system of patients infected with SARS-CoV-2, but there are still aspects that have not been fully characterized or understood. In this study, we have analyzed a cohort of patients with mild, moderate and severe disease. We performed flow cytometric studies and correlated the data with the clinical characteristics and clinical laboratory values of the patients. Both conventional and unsupervised data analyses concluded that patients with severe disease are characterized, among others, by a higher state of activation in all T cell subsets (CD4, CD8, double negative and T follicular helper cells), higher expression of perforin and granzyme B in cytotoxic cells, expansion of adaptive NK cells and the accumulation of activated and immature dysfunctional monocytes which are identified by a low expression of HLA-DR and an intriguing shift in the expression pattern of CD300 receptors. More importantly, correlation analysis showed a strong association between the alterations in the immune cells and the clinical signs of severity. These results indicate that patients with severe COVID-19 have a broad perturbation of their immune system, and they will help to understand the immunopathogenesis of COVID-19.
Journal Article
Looking for Accurate Forecasting of Copper TC/RC Benchmark Levels
by
Miras-Rodríguez, María del Mar
,
Escobar-Pérez, Bernabé
,
Díaz-Borrego, Francisco J.
in
Benchmarks
,
Capital markets
,
Commodities
2019
Forecasting copper prices has been the objective of numerous investigations. However, there is a lack of research about the price at which mines sell copper concentrate to smelters. The market reality is more complex since smelters obtain the copper that they sell from the concentrate that mines produce by processing the ore which they have extracted. It therefore becomes necessary to thoroughly analyse the price at which smelters buy the concentrates from the mines, besides the price at which they sell the copper. In practice, this cost is set by applying discounts to the price of cathodic copper, the most relevant being those corresponding to the smelters’ benefit margin (Treatment Charges-TC and Refining Charges-RC). These discounts are agreed upon annually in the markets and their correct forecasting will enable making more adequate models to estimate the price of copper concentrates, which would help smelters to duly forecast their benefit margin. Hence, the aim of this paper is to provide an effective tool to forecast copper TC/RC annual benchmark levels. With the annual benchmark data from 2004 to 2017 agreed upon during the LME Copper Week, a three-model comparison is made by contrasting different measures of error. The results obtained indicate that the LES (Linear Exponential Smoothing) model is the one that has the best predictive capacity to explain the evolution of TC/RC in both the long and the short term. This suggests a certain dependency on the previous levels of TC/RC, as well as the potential existence of cyclical patterns in them. This model thus allows us to make a more precise estimation of copper TC/RC levels, which makes it useful for smelters and mining companies.
Journal Article
Glomerular filtration rate is the main predictor of urine volume in autosomal dominant polycystic kidney disease patients treated with tolvaptan when daily osmolar excretion is expressed as urinary osmolality/creatinine ratio
by
Merino García, Enoc
,
Borrego Utiel, Francisco José
in
Care and treatment
,
Ethylenediaminetetraacetic acid
,
Letters to the Editor
2021
Journal Article
The Expression and Function of CD300 Molecules in the Main Players of Allergic Responses: Mast Cells, Basophils and Eosinophils
2020
Allergy is the host immune response against non-infectious substances called allergens. The prevalence of allergic diseases is increasing worldwide. However, while some drugs counteract the symptomatology caused by allergic reactions, no completely effective treatments for allergic diseases have been developed yet. In this sense, the ability of surface activating and inhibitory receptors to modulate the function of the main effector cells of allergic responses makes these molecules potential pharmacological targets. The CD300 receptor family consists of members with activating and inhibitory capabilities mainly expressed on the surface of immune cells. Multiple studies in the last few years have highlighted the importance of CD300 molecules in several pathological conditions. This review summarizes the literature on CD300 receptor expression, regulation and function in mast cells, basophils and eosinophils, the main players of allergic responses. Moreover, we review the involvement of CD300 receptors in the pathogenesis of certain allergic diseases, as well as their prospective use as therapeutic targets for the treatment of IgE-dependent allergic responses.
Journal Article
Production of Bio-Oils and Biochars from Olive Stones: Application of Biochars to the Esterification of Oleic Acid
by
García-Martín, Juan Francisco
,
Sánchez-Borrego, Francisco José
,
Álvarez-Mateos, Paloma
in
Batch reactors
,
batch systems
,
bio-oil
2021
Olive stones are a by-product of the olive oil industry. In this work, the valorisation of olive stones through pyrolysis was attempted. Before pyrolysis, half of the samples were impregnated with sulphuric acid. Pyrolysis was carried out in a vertical tubular furnace with a ceramic support. The pyrolysis conditions assayed were: temperature between 400 and 600 °C, heating ramp between 5 and 20 °C∙min−1, and inert gas flow rate between 50 and 300 mL Ar∙min−1. Among them, temperature was the only parameter that influenced the pyrolysis product distribution. The most suitable temperature for obtaining biochar was 400 °C for both non-treated and pre-treated raw material, while for obtaining bio-oil, it was 600 °C for impregnated olive stones and 400 °C for the raw material. The impregnated olives stones led to bio-oils with much higher amounts of high-added-value products such as levoglucosenone and catechol. Finally, the biochars were impregnated with sulphuric acid and assayed as biocatalysts for the esterification of oleic acid with methanol in a stirred tank batch reactor at 60 °C for 30 min. Biochars from non-treated olive stones, which had lower specific surfaces, led to higher esterification yields (up to 96.2%).
Journal Article
IL-12/15/18-induced cell death and mitochondrial dynamics of human NK cells
by
Astarloa-Pando, Gabirel
,
Amarilla-Irusta, Ainhoa
,
Terrén, Iñigo
in
Adoptive transfer
,
Atrophy
,
Autophagy
2023
Natural killer (NK) cells are lymphocytes with potent antitumor functions and, consequently, several NK cell-based strategies have been developed for cancer immunotherapy. A remarkable therapeutic approach is the adoptive transfer of NK cells stimulated with IL-12, IL-15 and IL-18. This cytokine stimulation endows NK cells with properties that resemble immunological memory and, for this reason, they are known as cytokine-induced memory-like (CIML) NK cells. Very promising results have been reported in clinical trials and yet, there are still unknown aspects of CIML NK cells. Here, we have conducted a preliminary study of their mitochondrial dynamics. Our results show that upon IL-12/15/18 stimulation the viability of NK cells decreased and an increment in mitochondrial superoxide levels was observed. In addition, we found that mitochondria appeared slightly elongated and their cristae density decreased following IL-12/15/18 stimulation, possibly in a process mediated by the low levels of optic atrophy type 1 (OPA1) protein. Interestingly, although mitophagy was slightly impaired, an increase in autophagic flux was observed, which might explain the reduced viability and the accumulation of unfit mitochondria. Our findings could be of relevance in order to design new strategies intended to improve the mitochondrial fitness of IL-12/15/18-stimulated NK cells with the aim of improving their therapeutic efficacy.
Journal Article