Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Bosada, Fernanda M."
Sort by:
Identification of atrial fibrillation associated genes and functional non-coding variants
Disease-associated genetic variants that lie in non-coding regions found by genome-wide association studies are thought to alter the functionality of transcription regulatory elements and target gene expression. To uncover causal genetic variants, variant regulatory elements and their target genes, here we cross-reference human transcriptomic, epigenomic and chromatin conformation datasets. Of 104 genetic variant regions associated with atrial fibrillation candidate target genes are prioritized. We optimize EMERGE enhancer prediction and use accessible chromatin profiles of human atrial cardiomyocytes to more accurately predict cardiac regulatory elements and identify hundreds of sub-threshold variants that co-localize with regulatory elements. Removal of mouse homologues of atrial fibrillation-associated regions in vivo uncovers a distal regulatory region involved in Gja1 (Cx43) expression. Our analyses provide a shortlist of genes likely affected by atrial fibrillation-associated variants and provide variant regulatory elements in each region that link genetic variation and target gene regulation, helping to focus future investigations. The majority of disease-associated genetic variants lie in non-coding regions. Here the authors generated and compiled human transcriptomic, epigenomic and chromatin conformation datasets, to identify genes associated with atrial fibrillation and functional non-coding variants.
An atrial fibrillation-associated regulatory region modulates cardiac Tbx5 levels and arrhythmia susceptibility
Heart development and rhythm control are highly Tbx5 dosage-sensitive. TBX5 haploinsufficiency causes congenital conduction disorders, whereas increased expression levels of TBX5 in human heart samples has been associated with atrial fibrillation (AF). We deleted the conserved mouse orthologues of two independent AF-associated genomic regions in the Tbx5 locus, one intronic (RE(int)) and one downstream (RE(down)) of Tbx5 . In both lines, we observed a modest (30%) increase of Tbx5 in the postnatal atria. To gain insight into the effects of slight dosage increase in vivo, we investigated the atrial transcriptional, epigenetic and electrophysiological properties of both lines. Increased atrial Tbx5 expression was associated with induction of genes involved in development, ion transport and conduction, with increased susceptibility to atrial arrhythmias, and increased action potential duration of atrial cardiomyocytes. We identified an AF-associated variant in the human RE(int) that increases its transcriptional activity. Expression of the AF-associated transcription factor Prrx1 was induced in Tbx5 RE(int)KO cardiomyocytes. We found that some of the transcriptional and functional changes in the atria caused by increased Tbx5 expression were normalized when reducing cardiac Prrx1 expression in Tbx5 RE(int)KO mice, indicating an interaction between these two AF genes. We conclude that modest increases in expression of dose-dependent transcription factors, caused by common regulatory variants, significantly impact on the cardiac gene regulatory network and disease susceptibility.
TAD boundary deletion causes PITX2-related cardiac electrical and structural defects
While 3D chromatin organization in topologically associating domains (TADs) and loops mediating regulatory element-promoter interactions is crucial for tissue-specific gene regulation, the extent of their involvement in human Mendelian disease is largely unknown. Here, we identify 7 families presenting a new cardiac entity associated with a heterozygous deletion of 2 CTCF binding sites on 4q25, inducing TAD fusion and chromatin conformation remodeling. The CTCF binding sites are located in a gene desert at 1 Mb from the Paired-like homeodomain transcription factor 2 gene ( PITX2 ). By introducing the ortholog of the human deletion in the mouse genome, we recapitulate the patient phenotype and characterize an opposite dysregulation of PITX2 expression in the sinoatrial node (ectopic activation) and ventricle (reduction), respectively. Chromatin conformation assay performed in human induced pluripotent stem cell-derived cardiomyocytes harboring the minimal deletion identified in family#1 reveals a conformation remodeling and fusion of TADs. We conclude that TAD remodeling mediated by deletion of CTCF binding sites causes a new autosomal dominant Mendelian cardiac disorder. This study identifies an altered chromatin conformation associated to a cardiac disorder observed in 7 independent families. A deletion of 2 diverging CTCF binding sites on 4q25 induces TAD fusion and leads to PITX2 expression dysregulation.
T-box transcription factor 3 governs a transcriptional program for the function of the mouse atrioventricular conduction system
Genome-wide association studies have identified noncoding variants near TBX3 that are associated with PR interval and QRS duration, suggesting that subtle changes in TBX3 expression affect atrioventricular conduction system function. To explore whether and to what extent the atrioventricular conduction system is affected by Tbx3 dose reduction, we first characterized electrophysiological properties and morphology of heterozygous Tbx3 mutant (Tbx3+/− ) mouse hearts. We found PR interval shortening and prolonged QRS duration, as well as atrioventricular bundle hypoplasia after birth in heterozygous mice. The atrioventricular node size was unaffected. Transcriptomic analysis of atrioventricular nodes isolated by laser capture microdissection revealed hundreds of deregulated genes in Tbx3+/− mutants. Notably, Tbx3+/− atrioventricular nodes showed increased expression of working myocardial gene programs (mitochondrial and metabolic processes, muscle contractility) and reduced expression of pacemaker gene programs (neuronal, Wnt signaling, calcium/ion channel activity). By integrating chromatin accessibility profiles (ATAC sequencing) of atrioventricular tissue and other epigenetic data, we identified Tbx3-dependent atrioventricular regulatory DNA elements (REs) on a genome-wide scale. We used transgenic reporter assays to determine the functionality of candidate REs near Ryr2, an up-regulated chamber-enriched gene, and in Cacna1g, a down-regulated conduction system-specific gene. Using genome editing to delete candidate REs, we showed that a strong intronic bipartite RE selectively governs Cacna1g expression in the conduction system in vivo. Our data provide insights into the multifactorial Tbx3-dependent transcriptional network that regulates the structure and function of the cardiac conduction system, which may underlie the differences in PR duration and QRS interval between individuals carrying variants in the TBX3 locus.
Rare variants in KDR, encoding VEGF Receptor 2, are associated with tetralogy of Fallot
Rare genetic variants in KDR, encoding the vascular endothelial growth factor receptor 2 (VEGFR2), have been reported in patients with tetralogy of Fallot (TOF). However, their role in disease causality and pathogenesis remains unclear. We conducted exome sequencing in a familial case of TOF and large-scale genetic studies, including burden testing, in >1,500 patients with TOF. We studied gene-targeted mice and conducted cell-based assays to explore the role of KDR genetic variation in the etiology of TOF. Exome sequencing in a family with two siblings affected by TOF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants. Rare variant burden analysis conducted in a set of 1,569 patients of European descent with TOF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11). Rare KDR variants, in particular PTVs, strongly associate with TOF, likely in the setting of different inheritance patterns. Supported by genetic and in vivo and in vitro functional analysis, we propose loss-of-function of VEGFR2 as one of the mechanisms involved in the pathogenesis of TOF.
The Brugada syndrome associated gene WT1 impacts on SCN5A expression and cardiac conduction
Brugada syndrome (BrS) is an inherited cardiac arrhythmic disorder caused by conduction slowing primarily affecting the right ventricular (RV) outflow tract (RVOT). A recent genome-wide association study (GWAS) implicated a genomic region in chromosome 11, overlapping the transcription factor WT1, in BrS susceptibility. Here, we investigated the role of WT1 on cardiac conduction using a heterozygous knockout mouse model (Wt1+/-). Transcriptomic analysis revealed increased Scn5a expression predominantly in Wt1+/-cardiomyocytes of the (sub)epicardium of the RV and RVOT without any changes in electrical properties. To unmask an effect on cardiac conduction, we performed optical mapping in a severely challenged setting offered by Scn5a haploinsufficiency, ageing, and exposure to the sodium channel blocker ajmaline and found that diminished Wt1 improved the observed slowed conduction. Examination of human single-nuclei cardiac datasets indicated a strong negative correlation between WT1 and SCN5A expression. In line with this observation, cardiac samples from patients with mutations in SCN5A showed increased WT1 protein abundance in histological sections, suggesting that increased WT1, and not loss, is associated with BrS pathophysiology. By deleting the mouse orthologue of a BrS-associated noncoding region (RE) harboring a candidate regulatory element, we established that this RE controls expression of Wt1 specifically in the (sub)epicardium of the RV. Lastly, transient overexpression of WT1 in hiPSC-derived cardiomyocytes resulted in reduced sodium current density. Our study therefore identifies the transcription factor WT1 as a novel contributor to the pathophysiology of BrS, at least in part, through SCN5A.Competing Interest StatementThe authors have declared no competing interest.
An atrial fibrillation-associated regulatory region modulates cardiac Tbx5 levels and arrhythmia susceptibility
Heart development and rhythm control are highly Tbx5 dosage-sensitive. TBX5 haploinsufficiency causes congenital conduction disorders, whereas increased expression levels of TBX5 in human heart samples has been associated with atrial fibrillation. We deleted the conserved mouse orthologues of two independent AF-associated genomic regions in the Tbx5 locus, one intronic (RE(int)-/-) and one downstream of Tbx5 (RE(down)-/-). In both lines we observed a modest (30%) increase of Tbx5 in the postnatal atria. To gain insight into the effects of slight dosage increase in vivo, we investigated the atrial transcriptional, epigenetic and electrophysiological properties of both lines. We observed induction of genes involved in development, ion transport and conduction, increased action potential duration and increased susceptibility to atrial arrhythmias. We identified an AF-associated variant in the human intronic regulatory region that increases transcriptional activity. Expression of the AF-associated transcription factor Prrx1 was induced in RE(int)-/- cardiomyocytes. We found that some of the transcriptional and functional changes in the atria caused by increased Tbx5 expression were normalized when reducing cardiac Prrx1 expression in RE(int)-/- mice, indicating an interaction between these two AF genes. We conclude that modest increases in expression of dose-dependent transcription factors, caused by common regulatory variants, significantly impact on the cardiac gene regulatory network and disease susceptibility. Competing Interest Statement The authors have declared no competing interest.
The smooth-walled human RVOT contains trabeculations that cause conduction delay
Aims: The right ventricular outflow tract (RVOT) is the outlet from the right ventricle and is the initiating substrate of life-threatening arrhythmias. While the luminal wall of the RVOT is often assumed to be without the complex trabecular meshwork that characterizes the right ventricular free wall, the anatomy of the RVOT is an understudied subject. Our aim was to investigate whether trabeculations occur in the RVOT and to assess whether this impacts electrical propagation. Methods & Results: We used high-resolution MRI and serial sectioning to reconstruct the macroscopic details of the human RVOT and identified cases exhibiting much trabeculation. The smooth lumen of the RVOT varied between 9% and 23% of the total RV anterior surface (N=11). Histological analysis on additional six hearts indicated that the RVOT compact layer is thinner when trabeculations are present. RNA sequencing of four human donor hearts revealed enrichment in the subendocardial region of 88 genes associated with cardiac conduction and trabeculations (P adjusted<0.05). Finally, we selected two human donor hearts showing trabeculations in the RVOT from which we generated wedge preparation and performed optical and electrical mapping. The trabecular regions demonstrated high degree of fractionation when compared to non-trabeculated regions, which coincided with delayed activation. Conclusion: Trabeculations are found in the RVOT, and their extent varies among individuals. This impacts on the thickness of the compact wall in the RVOT, restricting the depth of tissue at which clinical interventions can be performed, as well as influencing electrical propagation and possible arrhythmogenicity.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://github.com/bjboukens/Data-Jensenetal